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Currently, no vaccines or specific treatments are available to treat or prevent 
the increasing incidence of dengue worldwide. Therefore, an accurate 
prediction model is needed to support the anti-dengue control strategy. The 
primary objective of this study is to develop the most accurate model to 
predict future dengue cases in the Malaysian environment. This study uses 
secondary data collected from the weekly reports of the Ministry of Health 
Malaysia (MOH) website over six years, from 2017 to 2022. Three forecasting 
techniques, including seasonal autoregressive integrated moving average 
(SARIMA), dynamic harmonic regression (DHR), and neural network 
autoregressive model (NNAR), were first fitted to the estimation part of the 
data. First, several SARIMA models were run, and the best seasonal model 
identified was SARIMA (0, 1, 2) (1, 1, 1)52. The best DHR model was obtained 
with a Fourier term of 2, as this corresponds to the lowest Akaike 
Information Criteria (AIC) value. The NNAR (9, 1, 6)52 was considered the 
best choice among the NNAR models due to its superior performance in 
terms of the lowest error measures. The comparison among the three 
techniques revealed that the DHR model was the best due to its lowest MAPE 
and RMSE values. Thus, the DHR model was used to generate future forecasts 
of weekly dengue cases in Malaysia until 2023. The results showed that the 
model predicted more than a thousand dengue cases around weeks 27 to 32. 
The results showed an increase in dengue cases after the end of the monsoon 
season, which lasted about five months. This technique is proving to be 
valuable for health administrators in improving preparedness. 
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1. Introduction 

*In the past fifty years, the yearly incidence of 
dengue fever has increased by thirty percent, with 
between fifty and one hundred million infected and 
over half a million requiring hospitalization (Aguiar 
et al., 2022). The infectious dengue virus, which 
causes dengue fever, is spread by the female Aedes 
aegypti and Aedes albopictus mosquito species. 
Individuals between the ages of 15 and 49 are the 
most susceptible, regardless of gender, race, or 
ethnicity (Tantawichien, 2012). People with dengue 
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fever are more likely than others to have fevers of up 
to 40 degrees Celsius, severe headaches, body aches, 
and rashes (Htun et al., 2021). Prior dengue 
sufferers, pregnant women, and infants are at a 
greater risk of acquiring severe dengue. Due to the 
likelihood of severe instances resulting in dengue 
hemorrhagic fever (DHF), dengue shock syndrome 
(DSS), internal bleeding, and possibly death, the 
dengue virus is considered a life-threatening disease 
(Wang et al., 2020). Dengue illness is associated with 
the four serotypes of the virus and corresponds to 
four distinct epidemiological trends. The four dengue 
virus serotypes, DENV-1, DENV-2, DENV-3, and 
DENV-4, are members of the Flaviviridae virus 
family. These serotypes can coexist in a particular 
location, and many countries are hyper-endemic for 
all four serotypes. Infected travelers frequently 
contribute to the geographical spread of the dengue 
virus from one site to another. According to the 
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World Health Organization (WHO), Malaysia is home 
to all four serotypes of the dengue virus, which 
induce distinct immunological responses in the body. 
Vaughn (2000) and Fried et al. (2010) found that the 
prevailing serotype can be used to forecast the 
severity of a disease epidemic. They demonstrated 
that individuals with initial DENV-1 or DENV-3 
infections experienced severe sickness but that 
subsequent infection with DENV-2 exacerbated the 
condition, resulting in DHF. 

The earliest documented dengue epidemics 
occurred between 1780 and 1940 when the 
environmental instability caused by World War II 
increased the disease’s spread across Southeast Asia 
and the Pacific (Gubler, 2006). According to the 
World Health Organization, the dengue virus 
threatens nearly 2.5 billion people, or one-fifth of the 
global population. With the alarming surge in dengue 
infections worldwide, the World Health Organization 
(WHO) has also announced that the dengue virus has 
infected many more rural and urban countries than 
it did prior to the 1970s, with 70 percent happening 
in Asia, including Malaysia (Johari et al., 2019). 
Messina et al. (2014) noted that transmission of the 
dengue virus has spread to new regions, with the 
significant geographical expansion of several 
subtypes during the past two decades, especially in 
Asia and Latin America. Due to climate change, 
dengue fever has also become more prevalent in 
Central and South America, where it was formerly 
absent, and the failure of the dengue control 
campaign in the stipulated regions in the early 1970s 
paved the way for reinvasion and hyperendemicity 
as new virus serotypes moved more freely in these 
countries. Earlier estimates predicted that dengue 
fever would infect 50-100 million people worldwide, 
leading to 500,000 instances of DHF and up to 
20,000 deaths (Whitehorn and Farrar, 2011). A 
study by Bhatt et al. (2013) found worrisome 
estimates of the dengue burden, estimating 390 
million cases yearly, which is twice as much as prior 
projections. If climate change continues at its current 
rate, 50-60% of the world’s population will be 
exposed to these vectors in 100 years, compared to 
35% today (Butterworth et al., 2017). 

Currently, no vaccines or specific treatments are 
available to treat or prevent the rising incidence of 
dengue worldwide. Many strategies have been 
proposed to tackle dengue surveillance and control 
activities effectively. The strategy generally 
comprises putting the vector population under 
surveillance and strategizing the control activity. The 
vector surveillance methods include the processes of 
collecting information relating to the population of 
dengue vectors and environmental factors that 
influence the vector life expectancy stages and rate 
(e.g., temperature, rainfall, and wind speed), which 
generally be used to predict the risk of dengue 
outbreak (Patil and Pandya, 2021; Hamdan and 
Kilicman, 2021). Meanwhile, the vector control 
methods are designed based on the precarious 
nature of the situation, resulting from the outcome of 
the surveillance method and the occurrence of 

dengue cases. It includes the manual removal of 
potential vector breeding grounds, fogging action 
using adulticides and larvicides, introducing specific 
types of bacteria to kill the immature stages of 
mosquitoes, or limiting viral replication and 
transmission in adult mosquitoes (Nazni et al., 
2019). Other than that, there is also an awareness 
campaign activity for society (Kamaruddin et al., 
2021), and Malaysia has a Communication for 
Behavioral Impact (COMBI) program to reduce 
breeding sites (Azmawati et al., 2013). Hence, with 
only primary remedy treatment and without 
effective vaccines or specific antiviral treatments, an 
accurate prediction model is necessary to assist the 
primary anti-dengue control strategy, aiming to 
eliminate breeding sites to prevent dengue virus 
transmission by infected adult mosquitoes. 
Therefore, the primary objective of this study is to 
develop the most accurate model to forecast future 
dengue cases in Malaysia’s environment. The 
prediction model will enable early prevention and 
preparedness to combat dengue outbreaks, including 
an early warning system that can detect the 
outbreak’s onset point. It is anticipated that the 
forecasting model will aid the Malaysian government 
in formulating strategies for controlling future 
dengue outbreaks. 

2. Literature review 

Many studies have been conducted on dengue 
prediction, employing various methods, including 
time series, machine learning, and mathematical 
approaches. Among the recent studies are Aziz and 
Aziz (2021), Keshavamurthy et al. (2022), Roster et 
al. (2022), and Kaur and Sharma (2023), who 
applied machine learning, Juraphanthong and 
Kesorn (2021), Othman et al. (2022), and Waseem et 
al. (2023) considered time series approach, and 
Ewing et al. (2021), Vásquez et al. (2022), and Wang 
et al. (2022) who deployed mathematical modeling. 

Diverse comparisons of time series techniques 
have been used to examine the pattern of dengue 
occurrence, and it has been determined that the 
disease exhibits a seasonal pattern. For instance, 
Autoregressive Integrated Moving Average (ARIMA) 
models offer a different perspective on time series 
prediction. Mekparyup and Saithanu (2016) found 
that the seasonal ARIMA model best-predicted 
dengue haemorrhagic fever cases in Rayong, 
Thailand. Seasonal ARIMA was also the best model 
for predicting dengue cases in other countries such 
as Brazil, India, the Philippines, and Indonesia. On 
the other hand, Khashei and Bijari (2011) utilized a 
hybrid ARIMA-ANN model to improve forecasting 
accuracy. Chakraborty et al. (2019) compared 
models like ARIMA, ANN, NNAR, SVM, and LTSM and 
discovered that the hybrid ARIMA-NNAR model 
outperformed the others. A study by Nayak and 
Narayan (2019) in Kerala, India, predicted an 
increase in future dengue cases using 
SARIMA(1,0,0)(0,1,1)12. Another study in Asahan 
District, Indonesia, showed that seasonal ARIMA 
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outperformed other models in predicting dengue 
haemorrhagic fever outbreaks. Several other studies 
have also compared the ARIMA approach with the 
Holt-Winters method. Abas et al. (2018) compared 
the Double Exponential Smoothing and Holt-Winters 
Method to forecast the number of dengue cases in 
Malaysia from 2010 to 2015. Even though both 
models demonstrated good performance, the Holt-
Winters technique exhibited the lowest error 
measure, making it the most appropriate choice. In 
another study by Anggraeni et al. (2017) that aimed 
to forecast dengue fever patients in different groups 
in Malang, Indonesia, the Multiplicative Holt-Winters 
model outperformed other models in the low-Malang 
and medium-Malang groups. Elhassan et al. (2020) 
employed spatial methodologies to investigate 
mosquito reproduction patterns within University 
Municipality. Their objective was to assist Jeddah 
Municipality decision-makers in understanding the 
geographic areas where mosquito concentrations 
are prevalent. The ARIMA model has also been 
applied in other research areas. The model has been 
utilized to model the spread of COVID-19 cases 
(Jabeen et al., 2022) and mortality forecasting 
(Hamid et al., 2019). Moffat and Akpan (2017) 
identified and characterized deterministic and 
stochastic trends in their study in the context of 
revenue data. They analyzed revenue data to 
understand the underlying patterns and trends. 

Harmonic Regression is the popular machine 
learning used to identify and examine recurring 
patterns or seasonal effects in time series data 
modeling. This modeling technique is beneficial 
when dealing with data that exhibit cyclical patterns 
with known or estimated periods. For instance, 
studies by Naumova et al. (2007), Wenger and 
Naumova (2010), and Ramanathan et al. (2020) have 
utilized harmonic regression to capture and model 
the seasonal variations in infectious diseases. By 
decomposing the time series into harmonic 
components, these studies were able to identify the 
underlying seasonal patterns and estimate their 
frequencies and amplitudes.  

3. Methodology 

The process of selecting the best forecasting 
model for predicting dengue fever incidence in 
Malaysia comprises four general processes. The first 
process is collecting the data, followed by examining 
the presence of seasonality component in the 
number of dengue cases using three different time 
series techniques, namely Seasonal Autoregressive 
Integrated Moving Average (SARIMA), Dynamic 
Harmonic Regression (DHR), and Neural Network 
Autoregressive Model (NNAR) in the second process. 
Then, in the third process, the outcomes from the 
three techniques are compared to select the best 
model, and finally, the forecasting analysis is 
performed using the best model. Detailed 
explanations of the processes are presented in the 
following section. 

3.1. Data collection 

This study utilizes a dataset comprising 306 
weekly dengue cases reported in Malaysia from 
January 2017 to October 2022. These data points 
provide a historical record of dengue cases reported 
weekly over these six years. This data was sourced 
from the Ministry of Health Malaysia’s (MOH) official 
website (idengue.mysa.gov.my). Initially, the data 
was split into estimation (in-sample) and evaluation 
(out-of-sample) parts as it is a critical step in time 
series analysis in ensuring that models are 
developed, tested, and evaluated in a rigorous and 
unbiased manner, with a focus on accurate 
forecasting and generalization to new data. This 
practice will help to build reliable models to make 
meaningful predictions for future time series 
observations. Generally, the data splitting ratio can 
range from 0.60-0.9:0.1-0.4. In this study, the 
estimation is 207 weeks, and the evaluation is 99 
weeks to consider the existence of seasonality effect 
the dengue cases. 

This study captures the presence of seasonality 
component in the number of dengue cases using 
three different time series techniques, namely 
seasonal Autoregressive Integrated Moving Average, 
Dynamic Harmonic Regression, and Neural Network 
models, which will be pointed as SARIMA, DHR, and 
NNAR, respectively, throughout this article. These 
three-time series techniques are employed to model 
the in-sample part of the data, and then the best 
model for each technique will be selected based on a 
few statistical criteria. Next, the three models are 
then compared using an out-of-sample dataset. The 
best-performing model of three different time series 
techniques will be utilized to forecast future dengue 
cases in Malaysia.  

3.2. Seasonal autoregressive integrated moving 
average (SARIMA) model 

The Seasonal Autoregressive Integrated Moving 
Average (SARIMA) model was first introduced by 
Box et al. (1994) and is also known as the Box-
Jenkins method (Lazim, 2011). It serves the purpose 
of capturing and describing the presence of 
autocorrelation in time series data. The SARIMA 
model incorporates additional components or 
extensions to address specific features or challenges 
in time series data, such as seasonal patterns. The 
time plot of the dengue series will indicate whether 
there is a need to address the presence of 
autocorrelation in the data. A unit root test was 
performed to examine the stationarity of the data. If 
the data is found to be non-stationary, differencing is 
applied until the data becomes stationary. This study 
deployed several alternative models to identify the 
best model to represent the dynamic behavior of 
historical dengue cases in Malaysia. The 
autocorrelation function (ACF) and partial 
autocorrelation function (PACF) plots were used to 
aid model identification. The seasonal ARIMA (p, d, 
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q) (P, D, Q)s model, based on the Box-Jenkins 
approach, can be expressed as follows: 
 

𝑦𝑡 = 𝜇 +
𝜃𝑞(𝐵)𝜃𝑄(𝐵𝑠)

𝜙𝑝(𝐵)𝜙𝑃(𝐵𝑠)(1−𝐵)𝑑(1−𝐵𝑠)𝐷
                                              (1) 

 

where, 𝑦𝑡  represents the weekly dengue cases at 
time t=1, 2,…, N, which spans 207 weeks. 𝜇 is the 
constant term. The model consists of three 
parameters divided into two parts: Non-seasonal (p, 
d, q) and seasonal (P, D, Q). The ARIMA order (p, d, 
q) denotes the autoregressive parameter(AR), p, the 
order of non-seasonal differencing, d, moving 
average (MA), q. The seasonal autoregressive (SAR), 
P, the order of seasonal differencing, D, and the 
seasonal moving average (SMA), Q. To eliminate the 
presence of seasonal component, seasonal 
differencing, (1 − 𝐵𝑠)𝐷 is performed where s 
corresponds to 52 weeks, the length of the 
seasonality. Non-seasonal differencing is carried out 
to remove the presence of trends, expressed as 
(1 − 𝐵)𝑑. The polynomials of the backward shift 
operator, 𝜙𝑝(𝐵), 𝜃𝑞(𝐵), 𝜙𝑃(𝐵𝑠), and 𝜃𝑄(𝐵𝑠) denotes 

for AR(p), MA(q), SAR(P), and SMA(Q), respectively. 
The stages in the SARIMA model development can be 
summarized in Fig. 1. 

 

 
Fig. 1: Stages in SARIMA modeling 

 

The SARIMA modeling approach begins with 
model identification. This step determines the most 
suitable model class for the time series data. Various 
statistical analyses are conducted during this 
process, including examining the autocorrelation 
function (ACF) and partial autocorrelation function 
(PACF). These analyses provide crucial insights into 
the data’s characteristics. An appropriate model 
class can be identified based on the information 
gathered from ACF and PACF plots. Several statistical 
tests are employed in SARIMA model analysis, such 
as unit root tests, to ascertain whether the time 
series data exhibits a unit root, a sign of non-

stationarity. A differencing approach can be 
performed if non-stationarity is detected, and the 
process continues until stationarity is achieved. In 
this study, three tests were employed, namely, 
Augmented Dickey-Fuller (ADF), Phillips-Perron 
(PP), and Kwiatkowski-Phillips-Schmidt-Shin (KPSS) 
tests. The key differences among these tests lie in 
their null and alternative hypotheses and their 
primary purposes. The ADF and PP tests are used to 
test for unit roots and distinguish between 
stationary and non-stationary time series, while the 
KPSS test is used to test for the presence of a 
stationary trend within a time series. A combination 
of these tests is used to thoroughly analyze the 
stationarity properties of time series data. 

Once the model is identified, the model fitting 
process is performed. The model fitting process 
assesses the estimated model’s validity through 
various diagnostic and statistical tests, including the 
Portmanteau test called Box-Pierce, Akaike 
Information Criteria (AIC), and log-likelihood (LL) 
criteria. In this study, the best SARIMA model has 
been selected based on the criteria of the lowest AIC 
value, the highest LL, and the presence of white noise 
or the absence of correlation among the model’s 
residuals, as determined by the Box-Pierce test. 
According to Box and Pierce (1970), the statistic 
value can be expressed as follows: 
 
𝑄𝐵𝑃 = 𝑇 ∑ �̂�𝑚

2ℎ
𝑚=1                                                                           (2) 

 

where, T is the number of sample size, �̂�𝑘
2 represents 

the squared of the estimated autocorrelation 
coefficient for each lag m, m=1, 2, …, h. If the 
calculated statistic value exceeds the critical value of 
a 𝜒𝛼,ℎ

2  distribution, it leads to rejecting the null 

hypothesis that the residuals are independent. 
Next, the AIC is also employed to validate the 

SARIMA models. It is a standard measure of the 
fitness of a SARIMA model. The equation can be 
expressed as follows: 
 

𝐴𝐼𝐶 = 𝑒
2𝑘

𝑇 (
∑ 𝑒𝑡

2𝑇
𝑡=1

𝑇
)                                                                        (3) 

 

where, T represents the sample size, k is the sum of 
the number of parameters estimated in the model 
(p+P+q+Q), and 𝑒 is the residual of the model. This 
equation aims to determine the values of p, P, q, and 
Q that minimize the value of the AIC. The SARIMA 
model with the lowest AIC value is chosen as the 
best-fitted model. 

LL is also considered part of the model validation 
process among SARIMA models. In general, this 
equation can be expressed as follows: 
 

log(𝐿) = −
𝑇

2
log(2𝜋) −

𝑇

2
log(𝜎2) −

1

2𝜎2
∑ 𝑒𝑡

2𝑇
𝑡=1                    (4) 

 

where, L is the likelihood function, T is the number 
sample size, 𝜎2 is the error variance, and 𝑒 is the 
residual of the model. The model with the highest LL 
is the best-fitting model. 

Model Identification

Model Estimation

Model Validation

Best Model Selection  
among SARIMA 

Models
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3.3. Dynamic harmonic regression (DHR) 

This study employed a DHR approach with 
Fourier terms to model the seasonal effect of dengue 
cases. Among the early studies that utilized this 
technique was Young et al. (1999). This technique is 
considered superior in handling more extensive 
seasonal lengths than SARIMA models. Different 
numbers of Fourier terms, K=1, 2, ..., 6, were allowed 
to capture the smoothness of the seasonal effect. The 
appropriate terms were determined based on the 
lowest AIC. This model has short-term dynamics that 
can be addressed by incorporating ARIMA errors 
into the DHR model. Following the approach of 
Young et al. (1999) and Ramanathan et al. (2020), 
the basic Harmonic regression model with ARIMA 
errors can be expressed as follows: 
 
𝑦𝑡 = 𝜇 + 𝛽𝑆 sin(2𝜋𝜔𝑡) + 𝛽𝐶 cos(2𝜋𝜔𝑡) + 𝜂𝑡                         (5) 
 

The ARIMA errors can be expressed using 
backward shift operator, B as: 
 
(1 − 𝐵)𝜂𝑡 = (1 − 𝜃𝐵)𝜀𝑡                                                               (6) 
 

The periodic component has a frequency of 𝜔, 
which is equal to 1/52 weeks. The model parameters 
𝛽𝑆 and 𝛽𝐶  are defined as 𝛽𝑆 = −𝛾𝑠𝑖𝑛𝜑 and 𝛽𝐶 =
𝛾𝑐𝑜𝑠𝜑, respectively. 𝛾 represents the amplitude that 
controls the fluctuation between two extreme points 
(peak and the lowest point), and 𝜑 is the phase angle 
that determines the location of the two extreme 
points. The error terms, 𝜀𝑡 are assumed to be 
independently and identically distributed with 
𝐸[𝜀𝑡] = 0 and 𝑉𝑎𝑟[𝜀𝑡] = 𝜎2. 

3.4. Neural network autoregressive (NNAR) 
model 

The Neural Network Autoregressive (NNAR) 
model is a nonlinear autoregressive model that is 
believed to provide more accurate forecasts, 
especially when dealing with complex and highly 
nonlinear data patterns. It can capture intricate 
dependencies and better adapt to changing 
conditions in the data. Hyndman and 
Athanasopoulos (2021) discussed the NNAR model 
in their book “Forecasting: Principles and Practice” 
and developed the nnetar function in the forecast 
package of the R programming language. In the case 
of seasonal data, an NNAR model can be theoretically 
expressed as NNAR (p, P, k)s model, which is 
equivalent to an ARIMA (p, 0, 0) (P, 0, 0)s model but 
with nonlinear functions. The model can be 
expressed as: 
 

𝑦𝑡 = 𝑓(𝑦𝑡−1,𝑦𝑡−2, … , 𝑦𝑡−𝑝,𝑦𝑡−𝑠,𝑦𝑡−2𝑠, … , 𝑦𝑡−𝑃𝑠 ) + 𝜀𝑡  

                 (7) 
 

where, k represents the number of neurons in the 
hidden layer and the inputs are represented by f(). 
The order of p and P represents the number of non-
seasonal lags and seasonal lags, respectively. All 

equations involved in this study assume that the 
error terms, 𝜀𝑡 are independently and identically 
distributed with 𝐸[𝜀𝑡] = 0 and 𝑉𝑎𝑟[𝜀𝑡] = 𝜎2. The 
best NNAR model is selected using the Box-Pierce 
test and two error measures: The root mean square 
error (RMSE) and Mean Absolute Percentage Error 
(MAPE). Further discussions on RMSE and MAPE are 
elaborated in the next section. 

3.5. Model selection among SARIMA, DHR, and 
NNAR techniques 

In the estimation part, the best model was 
selected for each type of time series model used 
based on the AIC and LL values. The lowest AIC 
values and LL (in absolute value) indicate the best 
estimation model for each. A Portmanteau test was 
conducted to ensure diagnostic checking on the 
residuals of the best model. 

Subsequently, the best model identified in the 
estimation part for each time series approach is 
fitted on the evaluation part (out-of-sample dataset) 
to evaluate the forecasting models’ performance. 
This study utilized error measures such as Mean 
Squared Error (MSE) and Mean Absolute Percentage 
Error (MAPE) to obtain quantitative assessments of 
the accuracy and quality of the model’s predictions. 
MSE, a widely used error measure, calculates the 
average of the squared differences between the 
predicted values and the actual values. It assigns 
greater weight to larger errors due to the squaring 
operation. MSE is valuable for assessing the overall 
performance of a model, with lower values 
indicating greater accuracy. On the other hand, 
MAPE is a relative error measure that calculates the 
average percentage difference between the 
predicted and actual values. It expresses the 
prediction error as a percentage of the actual value, 
making it easier to interpret.  

The RMSE and MAPE can be expressed as follows, 
respectively: 
 

𝑅𝑀𝑆𝐸 = √
∑ 𝑒𝑡

2𝑇
𝑡=1

𝑇
                                                                           (8) 

𝑀𝐴𝑃𝐸 = ∑
|(

𝑒𝑡
𝑦𝑡

)∗100|

𝑇
𝑇
𝑡=1                                                                 (9) 

 

The best model among the three is chosen based 
on the lowest values of MSE and MAPE. This best 
model is then utilized to forecast future values of 
dengue cases from December 2022 to December 
2023.  

4. Results and discussion 

This section presents the analysis of determining 
the presence of time series patterns such as trend, 
irregular, and seasonal patterns in weekly dengue 
cases in Malaysia. Understanding the time series 
behavior prior to analysis is essential for accurate 
modeling and improving forecasting accuracy. It can 
assist in making informed decisions and draw 
meaningful insights from time series data. In this 



Mustaffa et al/International Journal of Advanced and Applied Sciences, 11(1) 2024, Pages: 20-31 

25 
 

section, the findings are presented and explained 
comprehensively according to the study objective.  

Fig. 2 shows the weekly time series plot of the 
dengue cases from 2017 to 2020. From 2017 to 
2020, the Vector Control Unit of the Ministry of 
Public Security and Justice registered 383,409 
dengue fever cases. The number of dengue cases in 
Malaysia climbed year after year during the study 
period, reaching an all-time high in 2019, with 
130,101 dengue cases reported to the authorities. 
Over the study period, the observed incidence of 
dengue increased in both quantity and intensity, 
rising from 83,848 dengue cases in 2017 to 88,845 
cases in 2020 alone. The decompose function in R 
software was used to disintegrate the weekly dengue 
cases into their components: Trend, seasonality, and 
irregular (remainder). The decomposition helps 
understand and analyze the underlying patterns and 
fluctuations in the time series data. The individual 
component is also presented. Fig. 2 also illustrates a 
seasonal effect, particularly during 2018-2021, 
captured and portrayed in the ‘seasonal’ component. 
The ‘trend’ component indicates the presence of a 
nonlinear trend in dengue cases, while the 
‘remainder’ component represents the remaining 
variation in the data after removing both the 
seasonal and trend components from the dengue 
cases series. A seasonal pattern is evident in the 
wave-like pattern observed in the remainder 
component, providing further support for seasonal 
variation in the data. Consequently, the weekly 
dengue cases series is considered non-stationary due 
to the non-constant mean and variance. 

4.1. SARIMA modelling 

SARIMA modeling was employed to capture 
seasonal patterns in the weekly dengue cases. Unit 
root tests, including the Augmented Dickey-Fuller 
(ADF), Phillip-Perron (PP), and Kwiatkowski-
Phillips-Schmidt-Shin (KPSS) tests, were conducted 
to confirm the attainment of stationarity of the data 
after performing the differencing approach. 

The results of the unit root tests are presented in 
Table 1. The results indicated that seasonal 
differencing alone cannot achieve stationarity in the 
data. The ADF and PP tests shared the null 
hypothesis that the series is non-stationary, while 
the KPSS test assumes the null hypothesis of the 
series being level or trend stationary. The p-values 
obtained from the ADF and PP tests exceed the 
significance levels of α=5%, 10%, and 1%, indicating 
a failure to reject the null hypothesis of non-
stationarity. In addition, the KPSS test yielded a p-
value below α, suggesting evidence against the null 
hypothesis of stationarity. All tests showed that the 
first-order seasonal differencing is insufficient to 
make the data stationary. Hence, a non-seasonal 
differencing of order one was then performed. The p-
values from the ADF and PP tests for non-seasonal 
differencing are lower than α, providing evidence to 

reject the null hypothesis of non-stationarity. 
Moreover, the KPSS test yields a p-value=0.10, 
exceeding α, supporting the hypothesis of 
stationarity. Thus, we conclude that after applying 
both seasonal and non-seasonal differencing, the 
results demonstrate the achievement of stationarity 
in the data.  

In addition to the unit root tests, the behavior of 
the autocorrelation function (ACF) and partial 
autocorrelation function (PACF) plots is also 
examined to assess the differenced series’ 
characteristics further. Fig. 3 presents the 
autocorrelation function (ACF) and partial 
autocorrelation function (PACF) plots for the 
differenced series of the weekly dengue data. The 
ACF plot of the seasonal differenced series exhibits 
an oscillation pattern, suggesting the presence of 
residual seasonality. To avoid over-differencing, we 
limit the order to one for both seasonal and non-
seasonal differencing. After applying both types of 
differencing, the data successfully achieves 
stationarity. Analyzing the ACF plot (top-right), 
significant autocorrelation at lags 2, 51, and 52 are 
identified, indicating an order of q=2 and a seasonal 
order of Q=1. Similarly, the PACF plot (bottom-right) 
reveals significant correlations at lags 1, 21, 51, and 
52, suggesting an order of p=3 and a seasonal order 
of P=1. However, due to a non-convergence issue 
with estimating SARIMA (3, 1, 2) (1, 1, 1)52, we 
reduce the order to SARIMA (2, 1, 1)(1, 1, 1)52. Any 
spikes barely touching the bands were ignored to 
avoid overfitting. 

To capture the seasonal effect without sacrificing 
parsimony, we utilized the auto.arima function from 
the forecast package. By setting the maximum 
parameters to five, the SARIMA (0, 1, 2) (1, 1, 0)52 
model is obtained. Considering the ACF and PACF 
plots of the stationary series, we explored 
alternative SARIMA orders, including SARIMA (0, 1, 
1) (1, 1, 1)52, SARIMA (1, 1, 1) (1, 1, 1)52 and SARIMA 
(0, 1, 2) (1, 1, 1)52, and SARIMA (0, 1, 0) (1, 1, 1)52. 
These SARIMA models were constructed and fitted 
to the data, with the estimation models summarized 
in Table 2. Based on the evaluation criteria, which 
include the AIC value, LL, and the Box-Pierce test, the 
SARIMA (0, 1, 2) (1, 1, 1)52 model emerges as the 
best choice with the lowest AIC value of 2149.13 and 
the highest LL, which is -1069.56. In addition, the p-
value of the Box-Pierce test is 0.9709, higher than all 
three significance levels, indicating that the model’s 
residuals are white noise. 

4.2. DHR model 

The dynamic harmonic regression approach with 
Fourier terms was employed to model the data. 
Table 3 presents the output, indicating that the 
optimal number of Fourier terms (K) is 2, which 
yields the lowest AIC value of -2775.057. 
Consequently, the model was estimated using K=2, 
and the results are displayed in Table 4. 
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Fig. 2: Time series plot of weekly dengue cases in Malaysia 

 
Table 1: Unit root tests for seasonal and non-seasonal differenced series of order one 

Unit root tests p-value for seasonal differenced series p-value for non-seasonal differenced series 
ADF 0.9039 0.01 
PP 0.8031 0.01 

KPSS 0.0100 0.10 

 

  

  
Fig. 3: ACF and PACF plots of seasonal (top-left and bottom-left) and non-seasonal differenced series of order 1 (top-right 

and bottom-right) 
 

4.3. NNAR model 

The NNAR model was implemented using the 
nnetar function, automatically selecting the NNAR (2, 
1, 2)52 model. However, in order to explore 
alternative options, we attempted to manually set 
the seasonal lags, P, ranging from 1 to 11. The error 
measure criteria were used to obtain the best-
estimated model using NNAR. To further evaluate 
the model selection, we compared the correlogram 

plots of the residual series for all models. Among 
these plots, NNAR (9, 1, 6)52 exhibited correlation 
coefficients that all fell within the confidence bands, 
indicating a white noise process, as displayed in 
Table 5. Based on this analysis, we concluded that 
the best NNAR model for our study is NNAR (9, 1, 
6)52 due to the presence of white noise residuals, as 
displayed in Fig. 4. Additionally, the Box-Pierce test 
(with a p-value greater than any level of significance) 
also confirms that the residuals of this model are 
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independent and white noise, supporting the 
correlogram plot’s findings. Despite slightly higher 
RMSE and MAPE values compared to NNAR (10, 1, 

6)52  and NNAR (11, 1, 6)52, we selected NNAR(9, 1, 
6)52 for its parsimonious criteria among these three 
models.

 
Table 2: Empirical results of SARIMA models 

SARIMA(p,d,q)(P,D,Q) Coefficient Value Box-Pierce test (p-value) AIC LL 

SARIMA(0,1,2)(1,1,0)52 

𝜃1 MA(1) 
-0.266 

(0.084) 

0.9919 2157.36 -1074.68 𝜃2 MA(2) 
0.1541 

(0.0796) 

𝜙1 SAR(1) 
-0.5714 
(0.0705) 

SARIMA(1,1,1)(1,1,1)52 

𝜙1 AR(1) 
-0.3502 
(0.2140) 

0.9348 2150.98 -1070.49 
𝜃1 MA(1) 

0.0922 
(0.2239) 

𝜙1 SAR(1) 
-0.1265 
(0.1333) 

𝜃1 SMA(1) 
-0.997 

(0.4910) 

SARIMA(2,1,1)(1,1,1)52 

𝜙1 AR(1) 
-0.3502 
(0.2140) 

0.8976 2151.70 -1069.85 

𝜙2 AR(2) 
0.2367 

(0.0988) 

𝜃1 MA(1) 
-0.6171 
(0.3282) 

𝜙1 SAR(1) 
-0.1388 
(0.1076) 

𝜃1 SMA(1) 
-0.9967 
(0.4328) 

SARIMA(0,1,1)(1,1,1)52 

𝜃1 MA(1) 
-0.2164 
(0.0736) 

0.6483 2151.10 -1071.55 𝜙1 SAR(1) 
-0.1277 
(0.1090) 

𝜃1 SMA(1) 
-0.9991 
(0.4348) 

SARIMA(0,1,2)(1,1,1)52 

𝜃1 MA(1) 
-0.2552 
(0.0849) 

0.9709 2149.13 -1069.56 
𝜃2 MA(2) 

0.1687 
(0.0821) 

𝜙1 SAR(1) 
-0.1322 
(0.1102) 

𝜃1 SMA(1) 
-0.9994 
(0.4232) 

SARIMA(0,1,0)(1,1,1)52 
𝜙1 SAR(1) 

-0.2238 
(0.0934) 

0.0007 2157.20 -1075.60 
𝜃1 SMA(1) 

-0.9990 
(0.4219) 

 
Table 3: AIC values for each Fourier term 

Fourier term, K AIC 
1 2801.243 
2 2775.057 
3 2776.305 
4 2779.074 
5 2780.384 

 
Table 4: Empirical results of the DHR model 

Coefficient Value Box-Pierce test (p-value) AIC LL 

𝜃1 MA(1) 
-0.2163 
(0.0667) 

0.9285 2775.057 -1381.53 
𝛽𝑆1 S(1) 23.5765 (127.8266) 
𝛽𝐶1 C(1) -63.5601 (126.2331) 
𝛽𝑆2 S(2) 302.4950 (64.4958) 
𝛽𝐶2 C(2) 265.3840 (63.7252) 

 
Table 5: Comparison of NNAR models 

NNAR(p,P,k)s RMSE MAPE Box-Pierce test (p-value) 
NNAR(2,1,2)52 216.426 8.635 0.7746 
NNAR(1,1,2)52 221.732 8.752 0.5302 
NNAR(1,3,2)52 139.305 5.776 0.3464 
NNAR(3,1,2)52 206.248 8.220 0.5779 
NNAR(1,2,2)52 228.458 8.073 0.5543 
NNAR(4,1,3)52 174.156 7.223 0.7757 
NNAR(9,1,4)52 109.3241 4.701 0.7612 

NNAR(10,1,4)52 106.138 4.548 0.6773 
NNAR(9,1,6)52 75.674 3.458 0.5324 

NNAR(10,1,6)52 62.686 2.949 0.7801 
NNAR(11,1,6)52 58.645 2.825 0.8485 
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Fig. 4: ACF plot of the residuals series of NNAR(9,1,6)52 

 

4.4. Comparing models among the three 
techniques 

A comparison among the best models for each 
modeling technique using an out-of-sample dataset 
was performed, and the results are presented in 

Table 6. The results indicate that the Dynamic 
Harmonic Regression with Fourier term (K=2) 
outperforms both the SARIMA model and the NNAR 
(9, 1, 6)52 models, as evidenced by the lowest RMSE 
and MAPE values of 537.68 and 49.31, respectively.  

 
Table 6: The out-of-sample model evaluation 

Error measures 
Models 

SARIMA(0,1,2)(1,1,1)52 DHR with k=2 NNAR(9,1,6) 52 
RMSE 546.99 537.68 597.74 
MAPE 58.42 49.61 94.84 

 

Moving forward, the DHR model was utilized to 
forecast the weekly dengue cases for 2023. Table 7 
presents the forecasted values for 2023, and Fig. 5 
displays the plots of these forecasts. The plot of 
future forecasts from the DHR model reveals a 
slightly increasing trend and seasonal pattern in the 
forecasted values of 2023. The number of forecasted 
cases surpasses a thousand during Week 2 to Week 
5, followed by Week 26 to Week 32. The forecasted 

values begin at approximately 956 cases in Week 1, 
reach their highest peak in Week 29, and then 
decline to below 300 cases in Weeks 41 to 45, with a 
minimum forecasted value of 236 cases in Week 43. 
There are approximately 35,664 cases of dengue 
occurrences forecasted using the DHR model in 
Malaysia, with an average of 686 cases per week in 
2023. 

 
Table 7: Forecast values for the year 2023 

Week Dengue cases Week Dengue cases Week Dengue cases 
1 956 19 413 37 584 
2 1005 20 481 38 485 
3 1034 21 563 39 397 
4 1040 22 655 40 325 
5 1024 23 752 41 272 
6 986 24 848 42 242 
7 930 25 937 43 236 
8 858 26 1015 44 253 
9 775 27 1076 45 294 

10 687 28 1118 46 354 
11 599 29 1136 47 431 
12 516 30 1131 48 520 
13 444 31 1102 49 616 
14 387 32 1050 50 713 
15 348 33 979 51 805 
16 331 34 891 52 888 
17 337 35 793   
18 364 36 688   
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Fig. 5: Plot of forecast values up to the year 2023 

 

5. Conclusion 

This study employed three-time series modeling 
techniques, namely Seasonal Autoregressive 
Integrated Moving Average (SARIMA), Dynamic 
Harmonic Regression (DHR), and Neural Network 
Autoregressive (NNAR) models, to model and, hence, 
forecast weekly dengue cases in Malaysia. It was 
found that the DHR model outperformed the other 
two techniques on the evaluation dataset based on 
the lowest error measures, MSE and MAPE. 
Subsequently, this best-performing model generated 
future forecast values for weekly dengue cases in 
2023. The analysis revealed that more than 1000 
cases occurred between Week 2 and Week 5 and 
between Week 26 and Week 32, with the highest 
number of cases (i.e., 1136) recorded in Week 29. 
These findings suggest an increase in dengue cases 
lasting approximately five months following the end 
of the monsoon season. Applying this technique can 
prove valuable for healthcare administrators in 
enhancing preparedness. Further research could 
focus on improving the prediction performance of 
the proposed model. Additionally, more advanced 
techniques, such as hybrid time series and machine 
learning approaches, could be explored for 
predicting dengue cases in Malaysia. 
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