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This paper introduces a model for studying plant epidemics that applies 
pesticides to control disease spread among two types of plant populations: 
those that are susceptible and those that are already infected. The model 
uses non-linear ordinary differential equations and the Holling type II 
response function to depict how disease spreads based on the number of 
susceptible plants available. The model is carefully checked for biological 
accuracy, ensuring characteristics such as positivity and boundedness. It 
defines points of equilibrium where the numbers of susceptible and infected 
plants stabilize. The study looks at scenarios with no infected plants 
(disease-free equilibrium) and scenarios where the disease continues to exist 
within the plant population (endemic equilibrium). The basic reproduction 
number, R0, is calculated to assess the system's stability. If R0 is less than 1, 
the disease is unlikely to spread widely, and the system is likely to return to 
being disease-free, both locally and globally, over time. However, if R0 is 
greater than 1, it indicates that the disease will persist in the population. This 
endemic state has also been shown to be stable both locally and globally. A 
sensitivity analysis helps identify key factors that affect disease spread and 
assists in forming strategies to manage the disease. Finally, numerical 
simulations are used to support the findings of the analysis. 
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1. Introduction 

*Mathematical models play a crucial role in 
understanding the impact of pesticides on various 
aspects of ecological and epidemiological systems. 
These models provide a quantitative framework to 
explore how the application of pesticides influences 
the dynamics of populations, disease spread, and the 
overall ecosystem (Arino et al., 2004). Researchers 
can use mathematical equations to understand the 
effects of pesticides on the interactions between 
susceptible and infective individuals, enabling them 
to simulate different scenarios and predict outcomes 
for various pesticide application strategies. For 
instance, in the context of disease control, 
mathematical models can help determine the 
optimal timing and dosage of pesticide application to 
minimize disease prevalence (Chowdhury et al., 
2019). They can also assess the potential for 
pesticide resistance to develop in target populations 
over time (Schechtman et al., 2020). Furthermore, 
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mathematical models can be used to study the 
unintended consequences of pesticide use. These 
include effects on non-target organisms, ecological 
disruptions, and shifts in the balance of predator-
prey relationships. By integrating data on pesticide 
toxicity, decay rates, and ecological parameters, 
models can quantify the impact of pesticides on 
various components of the ecosystem (Anguelov et 
al., 2017). Overall, mathematical models are 
essential for comprehending the impact of pesticides 
on populations and ecosystems, ultimately enabling 
more informed and sustainable decision-making in 
pest and disease management. 

When discussing the impact of pesticides on 
disease dynamics, the term "susceptible-infective" is 
usually associated with epidemiological models that 
study the spread of infectious diseases in 
populations (Brauer, 2005). In this context, 
"susceptible" refers to the plant populations that are 
susceptible to contracting the disease, while 
"infective" refers to populations that are infected and 
can transmit the disease to the susceptible plants. 
According to the World Health Organization (WHO), 
pesticides are chemicals used to control pests, 
including insects, fungi, and weeds, in agricultural 
and environmental settings. While pesticides are 
primarily designed to target pests, they can also have 
indirect effects on non-target organisms, including 
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beneficial insects and microbes. These indirect 
effects can have implications for disease dynamics in 
a population (Overton et al., 2021). Research on the 
impact of pesticides on disease dynamics often 
involves ecological and epidemiological models. 
These models can help scientists understand how 
pesticides may influence the prevalence and 
transmission of diseases in susceptible populations. 
Some studies focus on how pesticides affect the 
abundance or behavior of vector organisms (e.g., 
mosquitoes transmitting diseases like malaria or 
Zika virus) or how they alter the interactions 
between hosts and pathogens (Hilker and Schmitz, 
2008; Kar, 2005; Pal and Samanta, 2010). 

Employing pesticides within plant populations 
serves as a strategic approach to address various 
challenges and concerns related to plant health and 
agriculture. This practice involves the controlled 
application of chemical substances designed to 
manage pests, pathogens, and diseases that can 
adversely affect plant growth, yield, and overall 
health. It is important to note that while pesticides 
offer substantial benefits, their use requires careful 
consideration. Misuse or overreliance on pesticides 
can lead to unintended consequences, such as the 
development of pest resistance, environmental 
pollution, harm to non-target species, and health 
risks for humans. Integrated Pest Management (IPM) 
is a holistic approach that combines various 
strategies, including cultural practices, biological 
controls, and judicious pesticide use, to ensure 
effective and sustainable pest and disease 
management while minimizing negative impacts 
(Ofuoku et al., 2009). 

The term "Eco" used here refers to an intricate 
ecosystem composed of a few interdependent 
components. The foundation of ecosystem modeling 
dates back to the early work of Malthus and Verhulst 
in 1798 (Malthus, 2023), who focused on single 
populations, while Lotka (1910) introduced the 
initial models for interacting populations. The term 
"Epidemic" pertains to diseases that can manifest 
within the ecosystem (Bacaër, 2011). As such, an 
eco-epidemic model concerns the portrayal of the 
inherent behavior of an ecosystem influenced by 
specific diseases. The first epidemic model was 
formulated by Kermack and McKendrick (1927) 
(Kermack and McKendrick, 1991). Research has 
indicated that infectious diseases frequently disrupt 
predator-prey communities (Hsieh and Hsiao, 2008; 
Shorbaji et al., 2017). However, Bairagi and Adak 
(2015) have demonstrated that the infection of 
predators can also introduce a stabilizing effect. 
Most of the existing eco-epidemiology models 
concentrate on diseases within the prey population 
(Pal, 2020; Purnomo et al., 2017; Shorbaji et al., 
2017). Only a handful of models involve an infected 
predator population. Some of these later models may 
exhibit continuous oscillations that are not found in 
the non-infected environmental models considered 
(Hilker and Schmitz, 2008; Kar, 2005). 

The use of pesticides is key in controlling the 
spread of diseases among plants and maintaining 

ecological systems. This paper focuses on how 
pesticides affect plant disease spread by studying a 
specific plant epidemic model. We analyze how 
stable the disease control is when pesticides are 
used. The results offer new and valuable information 
that can help policymakers and ecologists make 
informed decisions about disease management and 
ecological preservation. 

The study of plant epidemic models often uses 
models similar to those for predator-prey 
interactions, where the role of prey or predators is 
played by plant populations facing an epidemic. In 
these models, plant populations are categorized into 
groups like susceptible and infected. Various control 
measures, such as medication and culling, are 
included in the models, applicable to diseases like 
bird and swine flu. However, this study introduces a 
unique focus on plant-specific epidemics, 
particularly in crops like tea and rice, and examines 
the effects of pesticide use, a topic not previously 
explored in research. 

This research was motivated by diseases that 
affect particular crops. For example, Algal leaf spot 
disease, also known as green scurf, caused by the 
algae Cephaleuros Virescens, affects tea plantations 
in regions like Assam and Meghalaya, causing 
significant economic losses. This disease, spread 
through rain-dispersed spores, challenges over 200 
plant species in warm, humid climates, severely 
impacting tea production. 

The paper is structured as follows: Sections 2 and 
3 develop a mathematical model for diseases in plant 
populations, including basic assumptions. Section 4 
discusses the model’s positivity and boundedness. 
Sections 5 and 6 analyze the stability of all possible 
equilibrium states of the model. Section 7 focuses on 
the sensitivity of the basic reproduction number. 
Section 8 uses numerical simulations to illustrate 
analytical results. Finally, Sections 9 and 10 present 
a detailed discussion of the results and conclusions. 
Advanced tools such as Mathematica, Matlab, and 
MatCont were used for the analytical and numerical 
work in this study. 

1.1. Assumptions of plant epidemic model 

The necessary assumptions for the proposed 
plant epidemic model are given as follows: 

 
1. The group of plants within a population that are 

susceptible to the disease but not yet infected is 
referred to as the susceptible class. This portion of 
the population is represented as 𝑆(𝑡). 

2. The group of plants that have the capacity to 
spread the disease to other plants within the 
population is referred to as the infected class. This 
proportion of the population is denoted as 𝐼(𝑡). 

3. In the absence of disease, the plant population 
experiences logistic growth with carrying capacity 
1

𝑏1
 and the natural growth rate 𝑎1. As a result, the 

plant populations will increase at a rate 
𝑎1𝑆(1 − 𝑏1𝑆). 
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4. When a disease exists, the plant populations get 
categorized into two disjoint classes, which change 
with time 𝑡: the susceptible plants, labeled as 𝑆(𝑡), 
and the infected plants, labeled as 𝐼(𝑡). 
Consequently, at time 𝑡, the overall population can 
be expressed as 𝑆(𝑡) + 𝐼(𝑡) = 𝑁(𝑡). 

5. The infection of susceptible plants occurs upon 
contact with infected plants, and this interaction is 
assumed to follow mass action kinetics 
characterized by the convolution rate 𝛽1. 

6. To achieve disease control, a quantity of pesticides, 
which is denoted by 𝑃(𝑡), is administered within 
the plant populations. This approach involves the 
application of pesticides to both the susceptible 
and infected plants in the model. 

7. The interaction between susceptible and infected 
plants is modeled using a Holling type II functional 

response given by 
𝛽1𝑆𝐼

1+𝛾1𝐼
. Similarly, the impact of 

pesticides on reducing the infection rate in plants 

is represented by another Holling Type II 

functional response, 
𝛽2𝐼𝑃

1+𝛾2𝑃
. 

8. All the model parameters are assumed to be non-
negative. 

2. Mathematical model 

At any time 𝑡, the plant population is divided into 
two sub-populations, namely the susceptible and the 
infected populations, which are denoted by 𝑆 =
𝑆(𝑡) and 𝐼 = 𝐼(𝑡) respectively and 𝑆(𝑡) + 𝐼(𝑡) =
𝑁(𝑡) denotes the Total Biomass of the plant 
populations. Let 𝑃 = 𝑃(𝑡) be the Pesticides used in 
the population considered. The transfer diagram of 
the model is depicted in Fig. 1, while Table 1 
provides the notations and descriptions for the 
model parameters. 

 
Fig. 1: Transfer diagram of the model (1) 

 
Table 1: Notations and description of model parameters 

Parameters Definitions of parameters 
𝑎1 The natural growth of susceptible plant population 
1

𝑏1

 

 
The carrying capacity of plants 

𝛽1 The contact rate of susceptible and infected plants 
𝛾1 The catching rate of disease by susceptible plants 
𝑐 The proportion of susceptible plants damaged by pesticides 
𝜇 The natural death rate of plant populations 
𝛽2 The contact rate of pesticides and infected plants 
𝛾2 The handling rate of infected plants by the use of pesticides 
𝛼 The rate at which pesticides are being used 

 

From Fig. 1, the mathematical model will be 
governed by the following system of equations: 

 
ⅆ𝑆

ⅆ𝑡
= 𝑎1𝑆(1 − 𝑏1𝑆) −

𝛽1𝑆𝐼

1+𝛾1𝐼
− 𝑐𝑃𝑆 −  𝜇𝑆  

ⅆ𝐼

ⅆ𝑡
=  

𝛽1𝑆𝐼

1+𝛾1𝐼
−  𝜇𝐼 − 

𝛽2𝐼𝑃

1+𝛾2𝑃
  

ⅆ𝑃

ⅆ𝑡
=  −𝛼𝑃.                     (1) 

 

From the biological point of view, we are only 
interested in the dynamics of the system (Eq. 1) in 
the closed octant 𝑅+

3 . Thus, we consider the initial 
conditions: 
 
𝑆(0) ≡  𝑆0 > 0, 𝐼(0) ≡  𝐼0 > 0 𝑎𝑛𝑑 𝑃(0) ≡  𝑃0 > 0.           (2) 
 

where, 
ⅆ𝑆

ⅆ𝑡
,
ⅆ𝐼

ⅆ𝑡
 and 

ⅆ𝑃

ⅆ𝑡
 represents the rates of change of 

the quantities 𝑆(𝑡), 𝐼(𝑡) and 𝑃(𝑡) respectively. 
 

2.1. Positivity and boundedness 

To ensure the model under consideration is well-
behaved and biologically valid, the paper examines 
certain essential properties such as positivity, which 
ensures that the populations of both susceptible and 
infected plants remain non-negative, and 
boundedness, which ensures that the populations do 
not grow indefinitely. The assertion of these 
properties is supported by Theorem 1 and Theorem 
2, which provide assurance for the positivity and 
boundedness of the system in Eq. 1. 

2.1.1. Positivity 

Theorem 1: Let 𝑆(0) > 0, 𝐼(0) > 0, 𝑃(0) > 0. This 
implies all solutions of the system represented by Eq. 
1 that start in 𝑅3 remain positive at 𝑅+

3  for all 𝑡 ≥ 0. 

P 

SS𝑐𝑐𝑃𝑆 

𝛼𝑃 

𝛽2𝐼𝑃

1 + 𝛾2𝑃
 

 

𝛽1𝑆𝐼

1 + 𝛾1𝐼
 

𝑎1𝑆(1 − 𝑏1𝑆) 
S I 

𝜇𝐼 
S 

𝜇𝑆 
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Proof: To prove the theorem, we use all the 
equations of the model (Eq. 1). Following a similar 
approach used by Hugo and Simanjilo (2019), we 
obtain the inequality expression from the 1st 
equation of model (Eq. 1) as follows: 

 
ⅆ𝑆

ⅆ𝑡
≤ 𝑎1𝑆(1 − 𝑏1𝑆),  

 
which, when simplified, gives: 

 

𝑆 ≤
𝑆(0)

𝑒−𝑎1𝑡(1−𝑏1𝑆(0))+𝑏1𝑆(0)
. 

 

Now, as 𝑡 → ∞, we obtain 0 < 𝑆 ≤
1

𝑏1
. Hence, the 

solution of system (1) is feasible in the region 𝛺 =
{𝑆, 𝐼, 𝑃}. 

Similar proofs can be established using a similar 
approach for the remaining equations of the model. 

 
Hence, the theorem. 

2.1.2. Boundedness 

Theorem 2:  All solutions of system (Eq. 1) that start 
in  𝑅+

3 are uniformly bounded.  
 

Proof: Let 𝑆(𝑡), 𝐼(𝑡), 𝑃(𝑡)) be any solution of the 

system (1). Since, 
ⅆ𝑆

ⅆ𝑡
≤ 𝑎1𝑆(1 − 𝑏1𝑆). 

 

We have, lim
𝑡→∞

sup 𝑆(𝑡) ≤ 𝑎1. Let 𝑊 =
𝑆

1+𝑎1
+ 𝐼 +

𝑃

𝛽2
. Then,  

 
ⅆ𝑊

ⅆ𝑡
=

𝑎1

1+𝑎1
𝑆(1 − 𝑏1𝑆) − 𝜇𝐼 −

𝛼

𝛽2
𝑃 ≤

𝑎1

1+𝑎1
𝑆 −  𝜇𝐼 −

𝛼

𝛽2
𝑃  

 

≤
2𝑎1

1+𝑎1
− 𝛿𝑊,  

 

where 
 
𝛿 = 𝑚𝑖𝑛{1, 𝜇, 𝛼}. 
 

Therefore, 
 
ⅆ𝑊

ⅆ𝑡
+ 𝛿𝑊 ≤

2𝑎1

1+𝑎1
. 

 
Applying a theorem of Birkhoff and Rota (1982) 

on the above differential inequalities, we obtain: 
 

0 ≤ 𝑊(𝑆, 𝐼, 𝑃) ≤
2𝑎1

(1+𝑎1)𝛿
+

𝑊(𝑆(0),𝐼(0),𝑃(0))

𝑒𝛿𝑡 . 

 
Now, as 𝑡 → ∞, we obtain 

 

0 ≤ 𝑊 ≤
2𝑎1

(1+𝑎1)𝛿
. 

 
Thus, all the solutions of Eq. 1 lie in the region: 

 

𝛺 = {(𝑆, 𝐼, 𝑃): 0 ≤ 𝑊 ≤
2𝑎1

(1+𝑎1)𝛿
+ 𝜂 for any 𝜂 > 0}.  

 
Hence, the theorem. 

3. Equilibria 

To determine the equilibrium points of the 
system of Eq. 1, we establish a state where the time 
derivatives of 𝑆, 𝐼, and 𝑃 are all set to zero. This 
yields four equilibrium points in the coordinates 
(𝑆∗, 𝐼∗, 𝑃∗), which are given as follows: 

 
1. The trivial equilibrium 𝐸0(0,0,0) which exists only 

if  𝑎1 < 𝜇. 

2. The axial equilibrium 𝐸1 (
1

𝑏1
, 0,0), where there are 

only susceptible plants, which always exist if 
𝛽1

𝜇𝑏1
<

1. 

3. Disease-free equilibrium point 𝐸2 (
𝑎1−𝜇

𝑎1𝑏1
, 0,0). It is 

seen that the equilibrium 𝐸1 consistently exists if 
and only if  𝑎1 > 𝜇. 

 
The basic reproduction number (𝑹𝟎): The basic 
reproductive number, denoted as 𝑅0 in the 
mathematical formulation of Eq. 1 set 1, is calculated 
through the application of the next-generation 
matrix method as outlined in the paper of Fantaye et 
al., (2022). 𝑅0 characterizes the average quantity of 
secondary infections originating from a single 
infected plant in a population that is entirely 
susceptible. Now, let 𝑥 = (𝐼, 𝑃, 𝑆). then the system of 
Eq. 1 can be rewritten as: 
 
ⅆ𝑥

ⅆ𝑡
= 𝐹(𝑥) − 𝑉(𝑥),                     (3) 

 

where, 
 

𝐹(𝑥) = [

𝛽1𝑆𝐼

1+𝛾1𝐼

0
0

]  

 

and 
 

𝑉(𝑥) =

[
 
 
  𝜇𝐼 +

𝛽2𝐼𝑃

1+𝛾2𝑃

𝛼𝑃
𝛽1𝑆𝐼

1+𝛾1𝐼
+ 𝑐𝑃𝑆 + 𝜇𝑆 − 𝑎1𝑆(1 − 𝑏1𝑆)]

 
 
 

. 

 

The Jacobian matrices of 𝐹(𝑥) and 𝑉(𝑥) are given 
by: 
 

𝐹(𝑥) = [

𝛽1𝑆

(1+𝛾1𝐼)
2 0

𝛽1𝐼

1+𝛾1𝐼

0 0 0
0 0 0

]  

and 
 
𝑉(𝑥) =

[
 
 
 𝜇 +

𝛽2𝑃

1+𝛾2𝑃

𝛽2𝐼

(1+𝛾1𝑃)2
0

0 𝛼 0
𝛽1𝑆

(1+𝛾1𝐼)2
𝑐𝑆

𝛽1𝐼

1+𝛾1𝐼
+ 𝑐𝑃 + 𝜇 − 𝑎1 + 2𝑎1𝑏1𝑆]

 
 
 

. 

 

At the disease-free equilibrium point 

𝐸2 (
𝑎1−𝜇

𝑎1𝑏1
, 0,0), the Jacobian matrices of 𝐹(𝑥) and 

𝑉(𝑥) become: 
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𝐹(𝑥) = [

𝛽1(𝑎1−𝜇)

𝑎1𝑏1
0 0

0 0 0
0 0 0

]  

 
and 
 

𝑉(𝑥) = [

𝜇 0 0
0 𝛼 0

𝛽1(𝑎1−𝜇)

𝑎1𝑏1

𝑐𝛽1(𝑎1−𝜇)

𝑎1𝑏1
𝑎1 − 𝜇

]  

 

Using the method of next-generation matrix, the 
basic reproduction number, 𝑅0 is the spectral radius 
of 𝐹𝑉−1 or the dominant eigenvalue of 𝐹𝑉−1 and 
thus, the basic reproduction number 𝑅0 is given by: 
 

𝑅0 =
𝛽1(𝑎1−𝜇)

𝜇𝑎1𝑏1
.                     (4) 

 

1. The disease endemic equilibrium point 
𝐸∗(𝑆∗, 𝐼∗, 𝑃∗). By simple calculation, we get: 

 

𝑆∗ = 
𝜇(1+𝛾1𝐼

∗ )

𝛽1
, 𝑃∗ = 0  

 

and 𝐼∗ are the roots of the following quadratic 
equation 

 

𝜒1𝐼
∗2 + 𝜒2𝐼

∗ + 𝜒3 = 0                    (5) 
 

where, 
 

𝜒1 = 𝑎1𝑏1𝜇𝛾1
2 > 0, 

𝜒2 = 𝑎1𝑏1𝜇(2𝛾1 + 1) − 𝛽1(𝛽1 + 𝛾1(𝑎1 − 𝜇)), 

𝜒3 = −𝛽1(𝑎1 − 𝜇). 
   

Hence, 

  

𝐼∗ =
−[𝑎1𝑏1𝜇(2𝛾1+1)−𝛽1(𝛽1+𝛾1(𝑎1−𝜇))]±√[𝑎1𝑏1𝜇(2𝛾1+1)−𝛽1(𝛽1+𝛾1(𝑎1−𝜇))]

2
+4𝑎1𝑏1𝛽1𝜇𝛾1

2(𝑎1−𝜇)

2𝑎1𝑏1𝜇𝛾1
2 . 

  
 

4. Stability analysis 

For the study of the stability properties, the 
Jacobian matrix 𝐽 of the system (1) is reported as 
follows: 
 

𝐽 = 

[
 
 
 𝐽11 − 

𝛽1𝑆

(1+𝛾1𝐼)2
− 𝑐𝑆

𝛽1𝐼

1+𝛾1𝐼
 𝐽22 − 

𝛽2𝐼

(1+𝛾2𝑃)2

0 0 −𝛼 ]
 
 
 
                   (6) 

 

where, 
 

𝐽11 = 𝑎1 −  2𝑎1𝑏1𝑆 − 
𝛽1𝐼

1+𝛾1𝐼
− 𝑐𝑃 − 𝜇  

𝐽22 = 
𝛽1𝑆

(1+𝛾1𝐼)2
− 𝜇 − 

𝛽2𝑃

1+𝛾2𝑃
.   

4.1. Stability of trivial equilibrium point  

Theorem 3: The trivial equilibrium point 𝐸0 is stable 
if 𝑎1 < 𝜇 and unstable otherwise. 

 

Proof: The Jacobian matrix of 𝐸0 is given by 
 

𝐽𝐸0
= [

𝑎1 − 𝜇 0 0
0 −𝜇 0
0 0 −𝛼

].                                     (7) 

 

The values of the above matrix are 
 

𝜆1 = 𝑎1 − 𝜇, λ2 = −𝜇, 𝜆3 =  −𝛼. 
 

The two eigenvalues λ2, λ3 are always negative. 
Then, for stability, we need to have 𝜆1 < 0 i.e., 𝑎1 <
𝜇. Hence, the trivial equilibrium point 𝐸0 is stable 
if 𝑎1 < 𝜇. 

 

Remark:  𝑎1 < 𝜇 implies that the plant population's 
natural growth rate is lower than its natural death 
rate, a scenario that can arise in adverse conditions 
like forest fires, floods, or landslides. Typically, 
population models assume that the natural growth 
rate is higher than the death rate. While 
mathematically, the trivial equilibrium point is stable 

under these conditions, in reality, it's an unstable 
state. 

4.2. Stability of axial equilibrium point  

Theorem 4: The axial equilibrium point 𝐸1 is stable 

if 
𝛽1

𝜇𝑏1
< 1 and unstable otherwise. 

 
Proof: The Jacobian matrix of 𝐸1 is given by 
 

𝐽𝐸1
= 

[
 
 
 −𝑎1 − 𝜇

−𝛽1

𝑏1

−𝑐

𝑏1

0
𝛽1

𝑏1
− 𝜇 0

0 0 −𝛼]
 
 
 
.                                                      (8) 

 

The values of the above matrix are 
 

𝜆1 = −(𝑎1 + 𝜇), λ2 =
𝛽1

𝑏1
− 𝜇, 𝜆3 =  −𝛼. 

 

The two eigenvalues λ1, λ3 are always negative. 
Then, for the stability of the axial equilibrium point 

𝐸1, we must have 𝜆2 < 0 i.e., 
𝛽1

𝑏1
− 𝜇 < 0 =>

𝛽1

𝜇𝑏1
< 1. 

Hence, the axial equilibrium point 𝐸1 is stable if 
𝛽1

𝜇𝑏1
<

1. 

4.3. Local stability of the disease-free 
equilibrium 

Theorem 5: The disease-free equilibrium 

𝐸2 (
𝑎1−𝜇

𝑎1𝑏1
, 0,0) is locally asymptotically stable if 𝑅0 <

1, where 𝑅0 = 
𝛽1(𝑎1−𝜇)

𝜇𝑎1𝑏1
 is a threshold parameter. 

 

Proof: The Jacobian matrix of 𝐸2 is given by 
 

𝐽𝐸2
= 

[
 
 
 −𝑎1 + 𝜇 −

𝛽1(𝑎1−𝜇)

𝑎1𝑏1

−𝑐

𝑎1𝑏1
(𝑎1 − 𝜇)

0
𝛽1(𝑎1−𝜇)

𝑎1𝑏1
− 𝜇 0

0 0 −𝛼 ]
 
 
 
.                (9) 
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There are three distinct eigenvalues of the 
matrix  𝐽𝐸2

. One is 𝜆1 = −(𝑎1 − 𝜇) < 0, the other is 

 𝜆2 = −𝛼 < 0 and 𝜆3 = 
𝛽1(𝑎1−𝜇)

𝑎1𝑏1
− 𝜇. Eigenvalues 

𝜆1, 𝜆2 are always negative. It means that the stability 
of an equilibrium point 𝐸2 depend upon the value 

 
𝛽1(𝑎1−𝜇)

𝑎1𝑏1
− 𝜇. 

 
Now, 

 

𝜆3 =  
𝛽1(𝑎1−𝜇)

𝑎1𝑏1
− 𝜇 = 𝜇 (

𝛽1(𝑎1−𝜇)

𝜇𝑎1𝑏1
− 1)  

= 𝜇(𝑅0 − 1). 
 

Here, 𝜆3 = 𝜇(𝑅0 − 1) < 0 if 𝑅0 < 1, which implies 
that all the eigenvalues are negative. Hence, the 
disease-free equilibrium point 𝐸2 is node and 
asymptotically stable. It means that the infected 
population will vanish, and the disease will be 
eradicated in the plants population. On the other 
hand, if 𝑅0 > 1, then the equilibrium point 𝐸2 is 
saddle point and unstable. 

4.4. Local stability of the endemic equilibrium 

Theorem 6: Suppose that 𝑅0 > 1, then the endemic 
equilibrium point 𝐸∗ is locally asymptotically stable 
and unstable otherwise. 
 
Proof: To establish the theorem, we utilize a parallel 
approach as described by Themairi et al. (2020). Let 
𝐽𝐸∗  denote the Jacobian matrix of 𝐸∗, then we have: 
 

𝐽𝐸∗ =  [

𝐴11 𝐴12 𝐴13

𝐴21 𝐴22 𝐴23

0 0 𝐴33

]                  (10) 

 
where,  
 

𝐴11 = 𝑎1 −  2𝑎1𝑏1𝑆
∗ − 

𝛽1𝐼∗

1+𝛾1𝐼∗
 − 𝜇,  𝐴12 = − 

𝛽1𝑆∗ 

(1+𝛾1𝐼∗)2
, 𝐴13 =

− 𝑐𝑆∗, 

𝐴21 =
𝛽1𝐼∗

1+𝛾1𝐼
∗, 𝐴22 =

𝛽1𝑆
∗

(1+𝛾1𝐼
∗)2

−  𝜇, 𝐴23 = − 
𝛽2𝐼

∗

(1+𝛾2𝑃∗)2
, 𝐴33 =

−𝛼. 

 
The characteristic equation of the Jacobian matrix 

𝐽𝐸∗  is given by: 
 
𝜑3 + 𝑎1𝜑

2 + 𝑎2𝜑 + 𝑎3 = 0,                  (11) 
 

where, 
 
𝑎1 = −(𝐴11 + 𝐴22 + 𝐴33), 
𝑎2 = 𝐴11𝐴22 + 𝐴11𝐴33 + 𝐴22𝐴33 − 𝐴12𝐴21, 
𝑎3 = 𝐴12𝐴21𝐴33 − 𝐴11𝐴22𝐴33. 

 
Hence, 

 
𝑎1𝑎2 − 𝑎3 =  [−(𝐴11 + 𝐴22 + 𝐴33)(𝐴11𝐴22 + 𝐴11𝐴33 +
𝐴22𝐴33) + 𝐴12𝐴21(𝐴11 + 𝐴22)] + 𝐴11𝐴22𝐴33.                (12) 
 

Let 𝑊1 = 𝐴11𝐴22𝐴33. If 𝐴11 < 0, 𝐴22 < 0 and 𝐴33 < 0, 

then 𝑎1 > 0, 𝑎3 > 0, 𝑊1 < 0,  
 

and the first bracket in Eq. 12 is positive. Thus, if 
 
𝑊1 < [−(𝐴11 + 𝐴22 + 𝐴33)(𝐴11𝐴22 + 𝐴11𝐴33 + 𝐴22𝐴33) +

𝐴12𝐴21(𝐴11 + 𝐴22)], 
 
then, by using the Routh-Hurwitz criterion, 𝐸∗ is 
asymptotically stable. 

4.5. Global stability of the disease-free 
equilibrium 

Theorem 7: Suppose that 𝑅0 < 1, then the disease-
free equilibrium point 𝐸2 is globally asymptotically 
stable. 
 
Proof: To prove the global stability of the disease-
free equilibrium point E2,  we will construct the 
following Lyapunov Function, which is given by: 
 

𝐽(𝑆, 𝐼, 𝑃) =
1

2
[(𝑆 − 𝑆0) + (𝐼 − 𝐼0)]2.                 (13) 

 
Clearly, 𝐽(𝑆, 𝐼, 𝑃) ≥ 0 at the disease-free 

equilibrium and equal to zero whenever 𝑆 = 𝑆0 and 
𝐼 = 𝐼0. Then, the derivative of Eq. 13 with respect to 
time 𝑡 becomes: 
 
ⅆ

ⅆ𝑡
𝐽(𝑆, 𝐼, 𝑃) = [(𝑆 − 𝑆0) + (𝐼 − 𝐼0)] (

ⅆ𝑆

ⅆ𝑡
+

ⅆ𝐼

ⅆ𝑡
).                (14) 

 

Substituting the values of (
ⅆ𝑆

ⅆ𝑡
) and (

ⅆ𝐼

ⅆ𝑡
) from the 

system of Eq. 1 in Eq. 14, we have 
 
ⅆ

ⅆ𝑡
𝐽(𝑆, 𝐼, 𝑃) = (𝑆 − 𝑆0 + 𝐼 − 𝐼0) (𝑎1𝑆 − 𝑎1𝑏1𝑆

2 − 𝑐𝑃𝑆 −

 𝜇𝑆 − 𝜇𝐼 −
𝛽2𝐼𝑃

1+𝛾2𝑃
),  

= −[(𝑆 − 𝑆0) + (𝐼 − 𝐼0)](𝑉 − 𝑈).  
 

Clearly, 
ⅆ

ⅆ𝑡
𝐽(𝑆, 𝐼, 𝑃) ≤ 0 if and only if 𝑉 − 𝑈 > 0, 

where 𝑉 = 𝑎1𝑆 − 𝑎1𝑏1𝑆
2 − 𝑐𝑃𝑆 −  𝜇𝑆 − 𝜇𝐼 −

𝛽2𝐼𝑃

1+𝛾2𝑃
 

and 𝑈 = 𝑎1𝑆. Moreover, 
ⅆ

ⅆ𝑡
𝐽(𝑆, 𝐼, 𝑃) = 0 if and only if 

𝑆 = 𝑆0 and 𝐼 = 𝐼0. Thus, by the invariance principle 
of LaSalle (1976), the disease-free equilibrium point 
E2 is globally asymptotically stable. 

4.6. Global stability of the endemic equilibrium 

For examining the global asymptotic stability of 
the disease endemic equilibrium point 𝐸∗, the 
following model is used. 

 

𝑎1𝑆
∗ = 𝑎1𝑏1𝑆

∗2 +
𝛽1𝑆∗𝐼∗

1+𝛾1𝐼
∗ + 𝑐𝑃∗𝑆∗ + 𝜇𝑆∗, 

𝜇𝐼∗ =
𝛽1𝑆∗𝐼∗

1+𝛾1𝐼
∗ −

𝛽2𝐼∗𝑃∗

1+𝛾2𝑃
∗, 

𝛼𝑃∗ = 0.  
 

Theorem 8: If 𝑅0 > 1, then the endemic equilibrium 
𝐸∗ of system (1) exhibits global asymptotic stability 
in the case where 𝑐 = 0. 
 
Proof: To prove the global stability of the endemic 
equilibrium 𝐸∗, we use the method proposed by 
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Fantaye and Birhanu (2022) and construct the 
following Lyapunov Function, which is given by: 
  

𝐺(𝑡) = (𝑆 − 𝑆∗ − 𝑆∗𝑙𝑛
𝑆

𝑆∗) + (𝐼 − 𝐼∗ − 𝐼∗𝑙𝑛
𝐼

𝐼∗
) +

(𝑃 − 𝑃∗ − 𝑃∗𝑙𝑛
𝑃

𝑃∗
),                  (15) 

 
after differentiating Eq. 15 with respect to time 𝑡, we 
have: 
 
ⅆ𝐺

ⅆ𝑡
= (1 −

𝑆∗

𝑆
)

ⅆ𝑆

ⅆ𝑡
+ (1 −

𝐼∗

𝐼
)

ⅆ𝐼

ⅆ𝑡
+ (1 −

𝑃∗

𝑃
)

ⅆ𝑃

ⅆ𝑡
.                (16) 

 

Now, 
 

(1 −
𝑆∗

𝑆
)

ⅆ𝑆

ⅆ𝑡
= (1 −

𝑆∗

𝑆
) [𝑎1𝑆(1 − 𝑏1𝑆) −

𝛽1𝑆𝐼

1+𝛾1𝐼
− 𝑐𝑃𝑆 −  𝜇𝑆]  

= (1 −
𝑆∗

𝑆
) (𝑎1𝑆 − 𝑎1𝑆

∗)  

= 𝑎1𝑆 (1 −
𝑆∗

𝑆
)
2

                   (17) 

(1 −
𝐼∗

𝐼
)

ⅆ𝐼

ⅆ𝑡
= (1 −

𝐼∗

𝐼
) [

𝛽1𝑆𝐼

1+𝛾1𝐼
−  𝜇𝐼 −  

𝛽2𝐼𝑃

1+𝛾2𝑃
]  

= (1 −
𝐼∗

𝐼
) [𝜇𝐼∗ −  𝜇𝐼]  

= (1 −
𝐼∗

𝐼
) [− 𝜇𝐼 (1 −

𝐼∗

𝐼
)]  

= −𝜇𝐼 (1 −
𝐼∗

𝐼
)
2

                   (18) 

(1 −
𝑃∗

𝑃
)

ⅆ𝑃

ⅆ𝑡
= −𝛼𝑃 (1 −

𝑃∗

𝑃
).                  (19) 

 

When the outcomes of Eqs. 17-19 are substituted 
to Eq. 16, we obtain: 
 
ⅆ𝐺

ⅆ𝑡
= 𝑎1𝑆 (1 −

𝑆∗

𝑆
)
2
− 𝜇𝐼 (1 −

𝐼∗

𝐼
)
2
− 𝛼𝑃 (1 −

𝑃∗

𝑃
), 

= 𝑎1𝑆 − 2𝑎1𝑆
∗ +

𝑎1𝑆
∗2

𝑆
− 𝜇𝐼 + 2𝜇𝐼∗ −

𝐼∗
2

𝐼
− 𝛼𝑃 + 𝛼𝑃∗, 

= [𝑎1𝑆 + 2𝜇𝐼∗ + 𝛼𝑃∗ +
𝑎1𝑆

∗2

𝑆
] − [𝜇𝐼 + 2𝑎1𝑆

∗ + 𝛼𝑃 +
𝐼∗

2

𝐼
]. 

 

Here, 
ⅆ𝐺

ⅆ𝑡
≤ 0 if [𝑎1𝑆 + 2𝜇𝐼∗ + 𝛼𝑃∗ +

𝑎1𝑆∗2

𝑆
] ≤ 0. 

Therefore, using the invariance principle of LaSalle 
(1976), 𝐸∗ is globally asymptotically stable 
whenever 𝑅0 > 1. 

5. Sensitivity analysis 

Determining the most sensitive parameters 
requires knowing the relative importance of the 
various factors involved in its transmission. We 
compute the sensitivity index of 𝑅0 for various 
parameters in the model. These indices indicate how 
important each parameter is for disease 
transmission (Rosa and Torres, 2018). The threshold 
parameter 𝑅0 is a function of four parameters, 
namely; 𝛽1, 𝑏1, 𝑎1 and 𝜇. The normalized forward 
sensitivity index of 𝑅0, which is differentiable with 
respect to a given parameter 𝑝, is defined by: 
 

𝛾𝑝
𝑅0 =  

𝜕𝑅0

𝜕𝑝

𝑝

𝑅0
.                                    (20) 

 
The analytical expression for the sensitivity of 𝑅0 

can be easily calculated using the explicit formula 
(20) for each parameter included in it. The 
sensitivity index values for the parameter values in 
Table 1 are shown in Table 2. Note that the 

sensitivity index can depend on several system 
parameters, but it can also be constant regardless of 

the parameters. For example, 𝛾𝛽1

𝑅0 = +1 and 𝛾𝑏1

𝑅0 =

−1, which means that increasing (decreasing)  
𝛽1,  𝑏1  by a certain percentage will always increase 
(decrease) 𝑅0 by the same percentage. 

 
Table 2: Sensitivity index table 

Parameters Sensitivity index Sensitivity index values 
𝛽1 1 1 
𝑏1 -1 -1 

𝑎1 
µ

𝑎1 − µ
 0.11 

µ 
𝑎1

µ − 𝑎1

 −1.11 

 

From Table 2, we see that the most sensitive 
parameters are the contact rate of susceptible and 
infected plants 𝛽1 and the natural death rate of plant 
populations µ.  

The contact rate 𝛽1 reflects how easily a 
susceptible plant can contract the disease when it 
comes into contact with an infected plant. A higher 
𝛽1 indicates that the disease can spread more rapidly 
within the population because there is a higher 
chance of transmission during contact. A lower 𝛽1, 
on the other hand, implies a slower transmission 
rate, potentially leading to a more controlled or 
contained spread of the disease. 

The natural death rate 𝜇 reflects the rate at which 
plants naturally die within the population, unrelated 
to the disease under investigation. A high 𝜇 indicates 
a high natural mortality rate. The sensitivity of this 
parameter implies that changes in the natural death 
rate have a significant impact on the dynamics of the 
plant population, which is essential to consider when 
studying the disease's effects over time. 

6. Numerical analysis 

The proposed plant epidemic model is analyzed 
numerically to observe the behavior of the spread of 
disease and the role of control measures in the 
decline of the disease. Numerical analysis is done on 
Matlab 2018a. 

6.1. Parameters and initial conditions 

𝑆(0) = 100 (100% of plant population), 𝐼(0) =
1 (10% of plant population infected), 𝑃(0) =
10( proportion of pesticide used). 𝑎1 = 0.1, 𝑏1 =
0.001, 𝛽1 = 0.001, 𝛾1 = 0.001, 𝑐 = 0.001, 𝜇 = 0.06, 
𝛽2 = 0.02, 𝛾2 = 0.021 and 𝛼 = 0.02. 

7. Result and discussion 

Using the specified parameters and initial 
conditions, we perform simulations of the model (1) 
until 𝑡 = 1200. The results are illustrated in Figs. 2-
8, considering scenarios both with and without 
control measures, where the application of 
pesticides is considered a form of control in the 
proposed plant epidemic model. Additionally, the 
stability of the model is depicted through the phase 
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portraits showcasing the relationship between 
susceptible and infected plant populations in both 

Fig. 6 and Fig. 8. 

 

 
Fig. 2: 𝑆(𝑡) vs. time under the application of pesticide 

 

 
Fig. 3: 𝐼(𝑡) vs. time under the application of pesticide 

 

 
Fig. 4: Amount of pesticides 𝑃(𝑡) used vs. time 
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Fig. 5: 𝑆(𝑡) and 𝐼(𝑡) vs. time under the application of pesticide 

 

 
Fig. 6: Phase portrait of 𝑆(𝑡) vs. 𝐼(𝑡) under the application of pesticide 

 

 
Fig. 7: 𝑆(𝑡) and 𝐼(𝑡) vs. time without the use of pesticide 

 

In the absence of pesticide application, the 
susceptible plant population demonstrates 
resistance to decline, hindering its attainment of a 
stable equilibrium, as shown in Fig. 2. Meanwhile, 
the infected plant population experiences an initial 

rise, eventually adopting a linear pattern without 
achieving a stable state, as evident in Fig. 3. Notably, 
it is evident that the absence of control measures 
leads to a prolonged time frame required for both 
the susceptible and infected plants to reach a steady 
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condition. When pesticide is introduced, as depicted 
in Fig. 5, a decline in plant infections becomes 
apparent. This results in oscillations of both 
susceptible and infected plant populations. This 
phenomenon is illustrated in Fig. 3 and Fig. 5, where 
the number of infected plants significantly 
diminishes. However, despite an initial increase in 

the susceptible plant population, its numbers are 
also impacted by the pesticide's effects, causing a 
subsequent decrease. The conceptual framework of 
the proposed model suggests that the use of 
pesticides not only curbs infection but may also 
interfere with the normal growth of the plant 
population.

 

 
Fig. 8: Phase portrait of 𝑆(𝑡) vs. 𝐼(𝑡) without the use of pesticide 

 

The phase portrait depicting the relationship 
between susceptible and infected plants unveils a 
state of instability in the absence of control 
measures, as represented in Fig. 8. Conversely when 
control measures are employed to mitigate the 
number of infected plants, the trajectory converges 
toward an equilibrium point, as exemplified in Fig. 6. 

8. Conclusion 

This paper introduces a detailed model designed 
to understand the dynamics of epidemics affecting 
plant populations. The main goal of the model is to 
explore how effective different control measures are 
at reducing the impact of these epidemics. Unlike 
animal or human populations where vaccination is 
commonly used to control epidemics, plant 
epidemics are typically managed through the use of 
pesticides. The application of pesticides, however, 
not only targets the infected plants but also affects 
those that are not infected, adding complexity to the 
situation. This complexity necessitates a 
sophisticated and nonlinear mathematical model to 
accurately represent plant epidemics. Within this 
model, the transmission of susceptibility to infection 
is assumed to follow a Holling Type II response, 
which is also used to model the reduction in 
infection due to pesticide application. Additionally, 
the model examines the effects of chemical control 
on the total biomass and the overall health of the 
plant population. The findings from our analysis are 
summarized as follows: 

 
1. The positivity and boundedness of the solutions of 

the system are shown to hold, indicating the 
system is biologically valid and well-behaved.  

2. The point of axial equilibrium, denoted as 𝐸1, 
represents a scenario where exclusively 
susceptible plants are present. This equilibrium 

state exists consistently under the condition 
𝛽1

𝜇𝑏1
<

1. In this situation, the disease is not spreading 
rapidly, and the number of susceptible plants 
remains stable. 

3. Through the utilization of the next-generation 
matrix technique, we have computed the basic 
reproduction number, denoted as 𝑅0, which serves 
as a crucial threshold parameter and determines 

its value to be 𝑅0 =
𝛽1(𝑎1−𝜇)

𝜇𝑎1𝑏1
. 

4. If 𝑅0 is less than 1, it signifies the elimination of 
the infected plant population, resulting in the 
eradication of the disease from the plant 
community. On the contrary, if 𝑅0 exceeds 1, there 
is a heightened probability of disease transmission 
among different plants within the population, 
potentially leading to a disease outbreak. A value 
of 𝑅0 equal to 1 acts as a disease threshold, 
indicating the disease's sustained presence and 
stability, although the likelihood of a widespread 
outbreak or epidemic remains limited. 

5. To analyze the stability properties of the system, 
we utilized and calculated the Jacobian matrix for 
the system of Eq. 1. 

6. We have shown that the disease-free equilibrium 
𝐸2 is both locally and globally asymptotically 
stable in cases where 𝑅0 is less than 1. 

7. Utilizing the Routh-Hurwitz criteria, we have 
established the local asymptotic stability of the 
endemic equilibrium 𝐸∗ within the system (1). 
Furthermore, through the consideration of a 
Lyapunov function, we have determined the global 
asymptotic stability of 𝐸∗. 
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8. The model's behavior remains stable near the 
disease-free and endemic equilibrium points, both 
on local and global scales. Both susceptible and 
infected plants display oscillatory behavior before 
settling into an equilibrium state over time. 
Without any control measures, it takes longer for 
both susceptible and infected plants to reach 
equilibrium. However, using pesticides to control 
the infection helps both types of plants achieve 
equilibrium more quickly. 

9. To identify the most sensitive parameters, it is 
crucial to understand the relative significance of 
the multiple factors contributing to its 
transmission. Consequently, we have conducted 
calculations for the sensitivity index of 𝑅0 
concerning various parameters within the model. 
These indices provide insight into the individual 
significance of each parameter in the context of 
disease transmission. It has been determined that 
the most sensitive parameters in our model are the 
contact rate of susceptible and infected plants, 
denoted as 𝛽1, and the natural death rate of plant 
populations, represented by 𝜇. Identifying and 
understanding these sensitive parameters is 
crucial for making informed decisions and 
interventions in disease control and plant 
population management. It allows researchers and 
policymakers to develop targeted strategies that 
are more likely to be effective in controlling 
disease outbreaks, preserving plant populations, 
and maintaining ecosystem health. 

10. In conclusion, numerical simulations have 
been conducted to validate and further support 
the analytical conclusions presented within the 
study. 

 
The stability and control of plant epidemic 

models under pesticide application are complex and 
multifaceted issues. This research offers novel 
insights that bridge the gap between disease 
management and ecosystem preservation. By 
optimizing pesticide dosages, identifying disease 
hotspots, and understanding the nonlinear dynamics 
at play, we present a comprehensive framework to 
guide sustainable management strategies in the 
plant community. Our findings have far-reaching 
implications for the conservation of ecosystems and 
the protection of plant populations against infectious 
diseases. 
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