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In graph theory and network analysis, finding the minimum cut in a graph is 
a fundamental algorithmic challenge. This paper explores the development 
and application of Benczur-Karger’s minimum cut algorithms, focusing on 
the relationship between theoretical advancements and practical 
implementation. Despite the algorithm's advantages, there are challenges 
related to its implementation complexities and the effects of compression 
factor settings. To address these issues, this paper first implements Benczur-
Karger’s minimum cuts algorithm in Python and discusses the 
implementation details. Additionally, we propose a new compression factor 
setting for Benczur-Karger’s minimum cuts algorithm and conduct an 
experiment with this new setting. The experimental results show that our 
proposed compression factor performs better than the original one. Finally, 
we discuss the application of Benczur-Karger’s minimum cuts algorithm in 
social network analysis, a field where its use has been limited. The code is 
available at https://github.com/HarleyHanqin/Modified_BK. 
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1. Introduction 

*In the realm of graph theory and network 
analysis, the concept of finding the minimum cut in a 
graph has emerged as a fundamental and 
indispensable algorithmic challenge (Gayathri et al., 
2024; Henzinger et al., 2018). The significance of 
minimum cut algorithms lies at the core of numerous 
real-world applications, ranging from network 
reliability and transportation optimization (Niu et 
al., 2020) to image segmentation (Niazi and Rahbar, 
2024) and community detection (Becchetti et al., 
2020). Moreover, minimum cut algorithms can be 
incorporated into pre-trained language models for 
natural language processing tasks (Huang et al., 
2024a), such as multi-hop question and answering 
(Huang et al., 2024b; Jin et al., 2023). As we delve 
into the intricate world of graph algorithms, it 
becomes evident that the efficient identification of a 
minimum cut not only bears theoretical importance 
but also holds practical implications in diverse 
domains. 
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The evolution of minimum cut algorithms reflects 
the continuous interplay between theoretical 
insights and practical applicability (Manoharan and 
Sathesh, 2020). From classic methods such as the 
Ford-Fulkerson algorithm (Bulut and Özcan, 2021) 
and the Stoer-Wagner algorithm (Zhao et al., 2020) 
to more recent contributions such as randomized 
contraction algorithms (Cygan et al., 2020) and 
multi-phase algorithms (Zhou et al., 2019), 
researchers have tirelessly strived to enhance the 
efficiency, scalability, and versatility of minimum cut 
computations. This evolution is particularly crucial 
in the context of ever-expanding datasets and 
complex network structures encountered in modern 
applications. 

In the dynamic and ever-evolving landscape of 
graph theory, the quest for efficient algorithms to 
address fundamental problems, such as identifying 
cuts in graphs, remains a focal point of research. One 
notable and increasingly recognized paradigm in this 
pursuit is the application of random sampling 
techniques. The use of randomness as a tool for 
algorithmic design has gained prominence, as it 
offers a fresh perspective and innovative solutions to 
long-standing challenges (Karger, 1994a; 1994b). 

Benczur and Karger (1996) enhanced existing 
random sampling methodologies to approximate 
solutions for graph problems involving cuts. They 
introduce a linear time construction, which converts 
a graph with 𝑛 vertices into an 𝑂(𝑛 log 𝑛)-edge graph 
with the same vertices. In addition, the cuts in this 
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transformed graph possess approximately the same 
value as those in the original graph. This modified 
graph facilitates the application of the 𝑂(𝑚𝑛)-time 
maximum flow algorithm by Goldberg and Tarjan, 
enabling the identification of an s–t minimum cut in 
𝑂(𝑛2) time. This corresponds to a (1 + ɛ)-
approximation of the minimum s–t cut in the original 
graph. Similarly, they demonstrate an 𝑂(𝑛2)-time 
approximation for the sparsest cut using this 
approach. 

However, the implementation of Benczur-
Karger’s minimum cuts algorithm is quite 
complicated, and the setting of the compression 
factor impacts the algorithm's performance. 
Moreover, Benczur-Karger’s minimum cuts 
algorithm is mostly used for image segments, and 
less attention has been given to other applications, 
such as social network analysis. In this paper, we 
rethink the implementation and application of 
Benczur-Karger’s Minimum Cuts Algorithm. The 
contributions of this paper are summarized below: 

 
1. First, we implement Benczur-Karger’s minimum 

cuts algorithm in Python and discuss the details of 
the implementation. 

2. We introduce a new compression factor for 
Benczur-Karger’s minimum cuts algorithm and 
conduct an experiment for the proposed 
compression factor. 

3. Finally, we will conduct Benczur-Karger’s 
minimum cuts algorithm on a social network 
dataset and discuss its application for social 
network analysis. 

2. Relative work 

2.1. Graph cut algorithms 

Graph cut algorithms have been a cornerstone in 
the field of graph theory, offering essential solutions 
for a wide array of applications, including image 
segmentation, network optimization, and community 
detection. Pioneering works laid the groundwork for 
classical algorithms such as the Ford–Fulkerson 
algorithm (Ford and Fulkerson, 1956) and the Stoer-
Wagner algorithm (Stoer and Wagner, 1997), which 
addressed the minimum cut problem by iteratively 
finding maximum flows. Nagamochi and Ibaraki 
(1992a, 1992b) explored the scope of the minimum 
cut problem and introduced a linear-time algorithm 
for finding a sparse k-connected spanning subgraph 
of a k-connected graph. Inspired by the studies of 
Nagamochi and Ibaraki’s (1992a, 1992b) studies, we 
combine a linear-time algorithm with the Benczur-
Karger minimum cut algorithm (Benczúr and Karger, 
1996) to improve the performance. The 2-respecting 
min-cut problem, a subroutine within Karger's 
(2000) well-known randomized near-linear-time 
min-cut algorithm, has undergone examination. The 
objective is to identify, in any weighted graph G and 
its spanning tree T, the minimum cut among those 
containing at most two edges in T. Mukhopadhyay 
and Nanongkai (2020) introduced a novel approach 

to address this problem, offering an easily 
implementable solution across various contexts. This 
has subsequently led to the development of 
randomized min-cut algorithms for weighted graphs. 

2.2. Random Sampling for Graphs 

Random sampling techniques have emerged as 
powerful tools for addressing computationally 
challenging problems in graph theory. Early 
contributions by Karger and Stein (1996) showcased 
the potential of randomized contraction algorithms 
for approximating minimum cuts. Building upon this 
foundation, Batson et al. (2014) introduced 
innovative linear-time constructions for 
transforming graphs while preserving cut 
properties. 

In the domain of sparsest cut approximation, 
Arora et al. (2009) proposed a polynomial-time 
algorithm with provable guarantees, illustrating the 
effectiveness of random sampling in tackling diverse 
graph cut problems. These approaches demonstrate 
the adaptability and efficiency of random sampling 
methodologies across various graph-related 
challenges. 

3. Implementation of Benczur-Karger’s minimum 
cuts algorithm 

3.1. Certificate 

The implementation of the Certificate is shown in 
Algorithm 1. The output of this algorithm is a set of 
edges with a maximum size 𝑘(𝑛 − 1), including all 
the edges with strong connectivity ≤ 𝑘. Notably, not 
every edge in the output has strong connectivity less 
than or equal to 𝑘. 
 
Algorithm 1 Certificate (𝐺, 𝑘) 
Input: A multi-graph 𝐺 = (𝑉, 𝐸), standard connectivity 𝑘. 
Output: A set of edges containing all edges with strong 
connectivity ≤ 𝑘. 

1: 𝐸1 ← ∅, 𝐸2 ← ∅, · · · , 𝐸|𝐸| ← ∅. 

2: For all 𝑣 ∈ 𝑉 , 𝑟 (𝑣) ← 0 
3: while 𝑉 is not empty do 
4: choose a vertex 𝑥 with the largest 𝑟 (𝑥) value 
5: for each edge(𝑥, 𝑦) ∈ 𝐺.𝐸 do 
6: 𝐸𝑟 ( 𝑦 )+1 ← 𝐸𝑟 ( 𝑦 )+1 ∪ {(𝑥, 𝑦)} 
7: if 𝑟 (𝑥) = 𝑟 (𝑦) then 
8: 𝑟 (𝑥) ← 𝑟 (𝑥) + 1 
9: end if 
10: 𝑟 (𝑦) ← 𝑟 (𝑦) + 1 
11: 𝐺.𝐸 ← 𝐺.𝐸 − (𝑥, 𝑦) 
12: end for 
13: 𝐺.𝑉 ← 𝐺.𝑉 − 𝑥 
14: end while 
15: return 𝐸1 ∪ 𝐸2 ∪ · · · ∪ 𝐸𝑘 

 
The subroutine Certificate (𝐺, 𝑘) runs in 𝑂(𝑚) 

time since the algorithm should iterate over each 
edge exactly once (Benczúr and Karger, 1996). The 
detailed proof can be found in Nagamochi and 
Ibaraki (1992a). In Certificate, each node is assigned 
a 𝑟(𝑣) value. We leverage a double linked list with 
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each element in the list containing an 𝑟 value a set of 
vertices with that 𝑟 value when searching for the 
vertex with the largest 𝑟(𝑣) value. Two elements 
with adjacent 𝑟 values are linked in both directions. 
The implementation of this data structure 
significantly reduces the time complexity for finding 
the largest 𝑟(𝑣) value. In particular, adding 𝑟(𝑣) for 
some vertex 𝑣 can be completed in 𝑂(1) time with 
the implementation of a doubly linked list. 

3.2. Partition 

The output of Partition contains fewer edges with 
connectivity greater than 𝑘, while Certificate is 
capable of providing edges with low-standard 
connectivity. The implementation of Partition is 
shown in Algorithm 2. The Partition algorithm runs 
in 𝑂(𝑚) time because it strictly iterates over each 
edge exactly once. Partition requires contracting the 

edges of the graph and returning the original edges 
before they are contracted. We use a different data 
structure to store which vertices are contracted to 
the current vertex. The implementation of Partition 
just needs to search for each edge in the original 
graph once rather than calculate and confirm 
whether it contracts to one of the selected edges. 

3.3. WeakEdges and estimation 

Using Partition, WeakEdges serves to determine 
the 𝑘-weak edges. Unlike the two previous 
algorithms, WeakEdges determines edges with less 
strong connectivity instead of standard connectivity. 
The implementation of WeakEdges is shown in 
Algorithm 3. Based on WeakEdges, we estimate the 
strong connectivity of each edge in the graph 
through Estimation (shown in Algorithm 4). 

 
Algorithm 2 Partition (𝐺, 𝑘, 𝐶1) 

Input: A graph 𝐺 = (𝑉 , 𝐸), connectivity 𝑘 
Output: A distilled set of edges containing all edges with strong connectivity ≤ 𝑘. 

1: while 𝑚 > 𝐶1 ∗ 𝑘 ∗ (𝑛 − 1) do 

2: 𝐸′ ← Certificate(𝐺, 𝑘) 

3: for all edges (𝑥, 𝑦) in 𝐸 − 𝐸′ do 

4: 𝐺.𝐸 ← 𝑐𝑜𝑛𝑡𝑟𝑎𝑐𝑡 (𝑥, 𝑦)                ▷ contract vertex 𝑦 onto 𝑥 

5: 𝐺.𝑉 ← 𝑉 − 𝑦 

6: end for 

7: end while 

8: return All uncontracted edges of 𝐺 

 
Algorithm 3 WeakEdges (G, k, C2) 

Input: A graph G = (V, E), strong connectivity k 

Output: A set of edges containing all the k-weak edges 

1: 𝜺 ← ∅ 

2: for log(n) times do 

3: E′ ← Partition(G, C2 * k) 

4: 𝜺 ←𝜺 ∪ E′ 

5: G.E ← G.E − E′ 

6: end for 

7: return 𝜀 

 
Algorithm 4 Estimation (G, k) 
Input: A graph G = (V, E, C3), current strong connectivity k 
which starts at 1, C3 ∈ {1, 2}. 
Output: A map that shows the estimation of the strong 
connectivity for every edge. 
1: E′ ← WeakEdges(G, C3 * k) 
2: for all e ∈E′ do 
3: k˜e ← k. 
4: end for 
5: G.E ← G.E − E′ 
6: for all nontrivial connected components H ∈ G do 
7: Estimation(H, 2 * k) 
 8: end for 

4. Generic compression factor 

Benczur and Karger (1996) defined the 

compression factor 𝜌 as 𝑂 (
𝑑ln⁡𝑛

𝜖2
), which leads to 

setting the compression factor to 𝑂(ln⁡𝑛). We 

introduce a new compression factor 𝜌 =
2𝑘average 

(2+𝜎2𝑚)
 for 

Benczur-Karger’s Minimum Cuts Algorithm, which 
can improve the performance of the algorithm (see 
section 5. Experiment and Results). 

4.1. Proof 

Lemma 1: Each cut in a graph should have an 

expected cut size 
𝑚

2
. 

 
Proof: By randomly choosing a cut, we split the set 
of vertices. If each vertex 𝑣 ∈ 𝐺. 𝑉 is set into one of 
two sets, the two sides are split by the cut. For each 
edge 𝑒 ∈ 𝐺. E, the probability of its two vertices 
coming up on the two different sides of the cut is 
exactly 1/2. Therefore, each edge is present in 
exactly half of the cuts, so that the average cut size is 
𝑚

2
. 

 
We assume that the strong connectivity 𝑘𝑒s 

remain relatively close for edges in the same graph. 
Consequently, the compression probability 𝑝 is the 
same. Assuming that the probability is the same for 
all edges, for each edge, it is kept with probability 𝑝 

(with weight 
1

𝑝
) and discarded with probability 1 − 𝑝. 

Thus, the resulting cut size for each cut can be 
expressed with a binomial distribution. We redefine 

𝜖 as the expected value of |
 new cut value 

 old cut value 
− 1|. 
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Lemma 2: Let 𝑐 be the value of the selected cut; 

given 𝜖, the expected compression factor 𝑝 is
1

1+𝜖2𝑐
 

 
Proof: As a result of the binomial distribution, the 
standard deviation 𝜎 satisfies: 
 

𝑝𝜎 = √𝑐𝑝(1 − 𝑝)                        (1) 
 
by definition, 
 

𝜖 =
𝜎

𝑐
                          (2) 

 
simplifying, we obtain: 
 

𝜖2 =
1−𝑝

𝑐𝑝
=

1

𝑐𝑝
−

1

𝑐
                       (3) 

 

by substituting 𝑝 =
𝜌

𝑘𝑒
 and 𝑐 =

𝑚

2
, we obtain: 

 
(2 + 𝜎2𝑚)𝜌 = 2𝑘𝑒                         (4) 
 

Since 𝑘𝑒  is the strong connectivity in the graph, 
we can obtain the average of the strong 
connectivities of all the edges in the graph, which 
accounts for the new expression for the compression 
factor: 

𝜌 =
2𝑘average 

(2+𝜎2𝑚)
                                            (5) 

5. Experiment and results 

5.1. Datasets 

We conducted the experiment using the social 
circle (Facebook) dataset (Leskovec and Mcauley, 
2012). This dataset comprises 'circles' or 'friends 
lists' sourced from Facebook and collected through a 
Facebook app administered to survey participants. It 
encompasses node features (profiles), circles, and 
ego networks. To ensure privacy, Facebook data 
have undergone anonymization by substituting the 
original Facebook-internal IDs for each user with 
new values. Additionally, feature vectors in this 
dataset were presented in an anonymized manner, 
obscuring the interpretation of these features. For 
example, where the original dataset may have 
denoted a feature as "political=Democratic Party," 
the anonymized data would instead display 
"political=anonymized feature 1." Consequently, 
while the anonymized data allows for the 
identification of shared political affiliations between 
two users, they do not disclose the specific nature of 
individual political affiliations. The dataset statistics 
are shown in Table 1. Note that these statistics in 
Table 1 were compiled by combining the ego 
networks, including the ego nodes themselves (along 
with an edge to each of their friends). 

5.2. Results 

We conducted an experiment to compare the 
performance of our proposed compression factor 

with the original factor. We measured the 
performance of Benczur-Karger’s minimum cuts 
algorithm by analyzing the cut values. As shown in 
Table 2, the results indicate that our proposed 
compression factor outperforms the original one for 
cut values ranging from 1,000 to 7,000. Performance 
was measured by the time taken to reach the cut 
values. Compared to the original algorithm, the 
algorithm with the new compression factor reduced 
the running time by approximately 51.6% on 
average. As the cut values increase, our proposed 
compression factor significantly decreases the 
algorithm's search time; however, it only reduces the 
time by 0.9 seconds in the range from 6,000 to 7,000. 
This suggests that while the new compression factor 
effectively improves the algorithm's performance, it 
has certain limitations. 

 
Table 1: Dataset statistics 
Nodes 4039 
Edges 88234 

Nodes in largest WCC 4039 (1.000) 
Edges in largest WCC 88234 (1.000) 
Nodes in largest SCC 4039 (1.000) 
Edges in largest SCC 88234 (1.000) 

Average clustering coefficient 0.6055 
Number of triangles 1612010 

Fraction of closed triangles 0.2647 
Diameter (longest shortest path) 8 
90-percentile effective diameter 4.7 

 
Table 2: Experimental results comparing proposed 

compression factor with the original 
Cut values Original (sec) Our proposed (sec) 

1,000 27.2 15.2 
2,000 39.7 20.5 
3,000 54.2 25.7 
4,000 72.8 32.3 
5,000 83.2 36.3 
6,000 98.5 43.7 
7,000 115.2 59.5 

6. Application for social network analysis 

We conduct an experiment with Benczur-
Karger’s minimum cuts algorithm on social circle 
(Facebook) datasets and further discuss the 
application of this algorithm to social network 
analysis. 

6.1. Community detection 

Minimum cuts can be employed to identify 
cohesive communities within a social network. By 
identifying the edges with the lowest weights or, 
conversely, removing edges with the highest 
weights, the network can be divided into distinct 
communities. This approach aids in understanding 
the natural divisions and subgroups within a larger 
social network, revealing patterns of interactions 
and relationships.  

6.2. Identifying key connectors 

Minimum cuts help pinpoint critical edges whose 
removal would result in a significant disconnection 
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between different parts of the network. These edges 
often represent key connectors or bridges between 
various communities. Identifying and understanding 
these critical connectors is essential for assessing the 
robustness and vulnerability of a social network. 

6.3. Graph partitioning for scalability 

In large-scale social networks, graph partitioning 
based on minimum cuts can be employed to divide 
the network into smaller, more manageable 
components. This approach facilitates scalability in 
terms of analysis and computational efficiency, 
enabling researchers to focus on specific 
subnetworks or communities within larger social 
graphs. 

6.4. Bi-partite graph analysis 

Social networks often involve interactions 
between two types of entities (e.g., users and 
events). Minimum cuts in bipartite graphs can reveal 
critical interactions or connections that bridge the 
gap between these two types of information, 
providing insights into the dynamics of user–event 
relationships. 

7. Conclusion 

In this paper, we revisited the implementation 
and application of the Benczur-Karger minimum cuts 
algorithm, offering several notable contributions to 
the field of graph theory and network analysis. We 
began by implementing the Benczur-Karger 
algorithm in Python, providing a comprehensive 
discussion of the implementation details. This effort 
highlights the practical complexities and challenges 
involved in the algorithm's application. 

A significant portion of our work focused on 
introducing a new compression factor for the 
Benczur-Karger algorithm. Through rigorous 
experimentation, we demonstrated that this 
proposed compression factor significantly 
outperforms the original, especially for cut values 
ranging from 1,000 to 7,000. Our results indicate an 
average reduction in running time of approximately 
51.6%, showcasing the efficiency and potential of 
our proposed method. However, we also observed 
that the performance gains diminish for higher cut 
values, suggesting that while the new compression 
factor is effective, it has certain limitations. 

Furthermore, we explored the application of the 
Benczur-Karger minimum cuts algorithm within the 
realm of social network analysis, an area where its 
use has been relatively limited. We demonstrated 
how the algorithm can be utilized for various tasks 
such as community detection, identifying key 
connectors, graph partitioning for scalability, and 
bipartite graph analysis. These applications 
underline the versatility and practical relevance of 
the Benczur-Karger algorithm in analyzing complex 
social networks. Our work not only bridges 

theoretical advancements with practical 
implementation but also extends the utility of the 
Benczur-Karger minimum cuts algorithm to new 
domains. Future research could focus on further 
refining the compression factor and exploring 
additional applications in other types of networks. 

In conclusion, this paper contributes to both the 
theoretical and practical aspects of minimum cut 
algorithms, offering insights and tools that can 
enhance their performance and applicability in 
diverse fields. 
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