
 International Journal of Advanced and Applied Sciences, 11(8) 2024, Pages: 44-50  
 

 
 

 
 

Contents lists available at Science-Gate  

International Journal of Advanced and Applied Sciences 
Journal homepage: http://www.science-gate.com/IJAAS.html 

 

 

44 

 

Position-dependent mass Schrödinger equation for the q-deformed 
Woods-Saxson plus hyperbolic tangent potential 
 

 

Emad Jaradat 1, *, Saja Tarawneh 1, Amer Aloqali 1, Marwan Ajoor 1, Raed Hijjawi 1, Omar Jaradat 2 
 
1Department of Physics, Mutah University, Al-Karak, Jordan 
2Department of Mathematics, Mutah University, Al-Karak, Jordan 
 

A R T I C L E  I N F O   A B S T R A C T  

Article history: 
Received 6 February 2024 
Received in revised form 
22 June 2024 
Accepted 21 July 2024 

In this work, we propose a new potential called the "q-deformed Woods-
Saxon plus hyperbolic tangent potential." We derive the generalized 
Schrödinger equation for quantum mechanical systems with position-
dependent masses under these potentials using the Nikiforov-Uvarov 

method, with the mass relationship defined as 𝑚(𝑥) = 𝑚1 (1 + 𝑞𝑒−2𝜆𝑥)⁄ . The 
solutions to this equation, expressed in terms of hypergeometric functions 
and Jacobi polynomials, offer insights into the quantum behavior of particles. 
The energy eigenvalues depend on system parameters such as the 
deformation parameter 𝑞, potential parameters, and quantum numbers. We 
analyzed the effect of the deformation parameter 𝑞 numerically and visually 
using different values of these parameters. 
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1. Introduction 

*The Woods-Saxon potential (Woods et al., 1954), 
also known as the Woods-Saxon potential well or 
nuclear potential well, is a mathematical model used 
in nuclear physics to describe the potential energy 
experienced by nucleons (protons and neutrons) 
inside an atomic nucleus. It is essential to the nuclear 
shell concept, which aims to describe the behavior of 
nucleons within nuclei. The Woods-Saxon potential 
is thought to be the most useful short-range 
potential in nuclear physics. It is extensively used in 
the research of the nuclear structure within the shell 
model. The interaction between a nucleon and a 
heavy nucleus is explained by the nuclear shell 
concept. Furthermore, other extended versions of 
this potential have been developed to study elastic 
and quasi-elastic nuclear particle scattering (Wang 
and Scheid, 2008). For this reason, the Woods–Saxon 
potential, whether in its spherical or deformed form, 
has seen a rise in application in nuclear numerical 
simulations (Bespalova et al., 2003; Goldberg et al., 
2004; Khounfais et al., 2004; Guo and Sheng, 2005). 
It was also applied in other branches of physics, such 
as the study of valence electron behavior in metallic 
systems and the helium model (Dudek et al., 2003). 
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It is also applicable to the nonlinear scalar theory of 
mesons (Erkol and Demiralp, 2007). Within the 
context of Several researchers (Arda et al., 2010; 
Berkdemir et al., 2006; Badalov et al., 2010; Ikhdair 
and Sever, 2007; 2008; Arda and Sever, 2009; 
Ikhdair and Sever, 2010; Guo and Sheng, 2005; 
Hagino and Tanimura, 2010; Panella et al., 2010; 
Abadi et al., 2019; Romaniega et al., 2020) have used 
a variety of approaches to work with the Woods-
Saxon potential, particularly in relativistic quantum 
mechanics. A method for obtaining the bound state 
solution of the one-dimensional Dirac equation for 
the Woods-Saxon potential was devised by Roja and 
Villalba (2005). The Nikiforov-Uvarov approach is 
used by Ikot et al. (2015) to solve the radial 
Schrödinger equation for the More General Woods-
Saxon Potential (MGWSP) (Okon et al., 2014). 
Additionally, a hierarchy of Hamiltonians for the 
Spherical Woods-Saxon potential was developed by 
Sadeghi and Pahlavani (2004). 

The aim of this paper is to use a wave function 
transformation to study the position-dependent 
effective mass Schrödinger equation. The position-
dependent effective mass Schrödinger equation was 
solved using the Nikiforov-Uvarov method in the 
presence of the q-deformed Woods-Saxon plus 
hyperbolic tangent potential. The remainder of the 
paper is structured as follows: In Section 2, the 
Nikiforov-Uvarov method is discussed. Section 3 is 
focused on the position-dependent mass 
Schrödinger equation. Section 4 is devoted to the 
solution of the position-dependent mass Schrödinger 

http://www.science-gate.com/
http://www.science-gate.com/IJAAS.html
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:ejaradat@mutah.edu.jo
https://doi.org/10.21833/ijaas.2024.08.005
https://orcid.org/0000-0001-5335-7060
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://crossmark.crossref.org/dialog/?doi=10.21833/ijaas.2024.08.005&amp;domain=pdf&amp


Jaradat et al/International Journal of Advanced and Applied Sciences, 11(8) 2024, Pages: 44-50 

45 
 

equation for Woods-Saxon plus hyperbolic tangent 
potential using the Nikiforov-Uvarov method. 

2. Nikiforov-Uvarov method  

The Nikiforov-Uvarov method (Nikiforov and 
Uvarov, 1988) is a method used in mathematics to 
solve linear differential equations of second order. 
Schrödinger-type equations in quantum mechanics 
can be solved efficiently with this approach (Al-
Hawamdeh et al., 2023; Jaradat et al., 2019; 
Yazdankish, 2021; Gu et al., 2022), especially when 
dealing with quantum systems that have unique 
potential forms. 

Using this method, the Schrödinger equation in 
one dimension is reduced to a generalized 
hypergeometric equation with the required 
coordinate transformation, x=x(s), for a given 
potential, and the following is one way to write it: 
 

𝜓′′(𝑠) +
�̃�(𝑠)

𝜎(𝑠)
𝜓′(𝑠) +

�̃�(𝑠)

𝜎2(𝑠)
𝜓(𝑠) = 0                   (1) 

 

where, 𝜎(𝑠) and �̃�(𝑠) are polynomials of degree at 
most two, �̃�(𝑠) is first-degree polynomial, and 𝜓(𝑠) is 
a function of hypergeometric type.  

Schrödinger equation is written for any 
potentials in the general form as: 
 

[
𝑑2

𝑑𝑠2
+

𝛼1−𝛼2𝑠

𝑠(1−𝛼3𝑠)
 

𝑑

𝑑𝑠
+

−ξ1𝑠2+ξ2𝑠−ξ3

𝑠2(1−𝑠)2
]𝜓 = 0 .                  (2) 

 
By separating the variables, a specific solution to 

Eq. 1 can be obtained by multiplying two distinct 
parts of the wave function, which are as follows: 

 
𝜓(𝑠)  =  𝜑(𝑠)𝑦(𝑠)                     (3) 

 
If one deals with the above transformation, Eq. 1 

is reduced to a hypergeometric equation: 
 
𝜎(𝑠)𝑦𝑛

′′(𝑠) + 𝜏(𝑠) 𝑦𝑛
′ (𝑠) + 𝜆𝑦𝑛(𝑠) = 0                   (4) 

 

where  
 
𝜏(𝑠) = 2𝜋(𝑠) + �̃�(𝑠).                                     (5) 

 
Its derivative is negative 𝜏′(𝑠) < 0, this condition 

helps to generate physical solutions. And φ(s) is 
described as a derivative of a logarithm: 

 
𝜑′(𝑠)

𝜑(𝑠)
=

𝜋(𝑠)

𝜎(𝑠)
.                     (6) 

 
Here, 𝜋(𝑠) is a polynomial with one degree or 

less. The solution of the hypergeometric-type 
differential Eq. 3 is a, is given by Rodrigues relation.  

 

𝑦𝑛(𝑠) =
𝐵𝑛

𝜌(𝑠)

𝑑𝑛

𝑑𝑠𝑛
[𝜎𝑛(𝑠)𝜌(𝑠)]                               (7) 

 

where, 𝐵𝑛 is the normalization constant, 𝜌(𝑠) is the 
weight function, and 𝑛 is a fixed given number. 

The weight function satisfies the following 
differential equation. 

𝑑

𝑑𝑠
[𝜎(𝑠)𝜌(𝑠)] = 𝜏(𝑠)𝜌(𝑠)                    (8) 

 

or 
 
𝜌′(𝑠)

𝜌(𝑠)
=

𝜏(𝑠)−𝜎′(𝑠)

𝜎(𝑠)
.                     (9) 

 

The function of 𝜋(𝑠) is given by. 
 

𝜋(𝑠) =
 𝜎 ′− �̃�(𝑠)

2
± √(

 𝜎 ′− �̃�(𝑠)

2
)2 −  �̃�(𝑠) + 𝑘𝜎(𝑠)                (10) 

 

and  
 
𝑘 = 𝜆 − 𝜋′(𝑠)                   (11) 
 

Consequently, the most important step is to find 
𝑘 by setting the discriminant of the square root in 
Eq. 10 to zero for the computation of 𝜋(𝑥). 
Furthermore, the eigenvalue equation given in Eq. 11 
now takes on the following new form: 
 

𝜆 = 𝜆𝑛 = −𝑛 𝜏′ −
𝑛(𝑛−1)

2
𝜎 ′′(𝑠) , (𝑛 = 0, 1, 2, … ).     (12) 

 

Here, prime factors represent the first-degree 
differentials. 

3. Position-dependent mass Schrödinger 
equation 

Von Roos's (1983) general position-dependent 
effective mass Hamiltonian is 

 

𝐻𝑒𝑓𝑓 = −
1

2
(𝑀𝛼(𝑥)

𝑑

𝑑𝑥
𝑀𝛽(𝑥)

𝑑

𝑑𝑥
𝑀𝛾(𝑥) +

𝑀𝛾(𝑥)
𝑑

𝑑𝑥
𝑀𝛽(𝑥)

𝑑

𝑑𝑥
𝑀𝛼(𝑥)) + 𝑉𝑒𝑓𝑓(𝑥).                 (13) 

 
With ℏ = 2𝑚0 = 1, 𝑀(𝑥) is the dimensionless 

form of the function 𝑚(𝑥) = 𝑚0𝑀(𝑥), and  𝛼 + 𝛽 +
𝛾 = −1 , by Von Roos's (1983) introduced restriction 
𝛼 = 𝛾 = 0 𝑎𝑛𝑑 𝛽 = −1 these parameters are called 
the ambiguity parameters. Eq. 13 becomes: 
 

𝐻𝑒𝑓𝑓 = −
1

2
(

𝑑

𝑑𝑥
𝑀−1(𝑥)

𝑑

𝑑𝑥
+

𝑑

𝑑𝑥
𝑀−1(𝑥)

𝑑

𝑑𝑥
)) + 𝑉𝑒𝑓𝑓(𝑥).  (14) 

 

Now the one-dimensional effective mass 
Hamiltonian of the Schrödinger equation reads as 

 

𝐻𝑒𝑓𝑓 = −
𝑑

𝑑𝑥
(

1

𝑚(𝑥)
)

𝑑

𝑑𝑥
+ 𝑉𝑒𝑓𝑓(𝑥).                 (15) 

 

Schrödinger equation is given by 
 

[−
𝑑

𝑑𝑥
(

1

𝑚(𝑥)
)

𝑑

𝑑𝑥
+ 𝑉𝑒𝑓𝑓(𝑥) − 𝐸] 𝜑(𝑥) = 0                             (16) 

 

After expanding Eq. 16, the Schrödinger equation 
takes form 
 

[−
1

𝑚(𝑥)

𝑑2

𝑑𝑥2 +
𝑚′(𝑥)

𝑚2(𝑥)

𝑑

𝑑𝑥
+ 𝑉𝑒𝑓𝑓(𝑥) − 𝐸] 𝜑(𝑥) = 0.                (17) 

 
The effective potential is given by: 
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𝑉𝑒𝑓𝑓(𝑥) = 𝑉(𝑥) +
1

2
(𝛽 + 1)

𝑚′′(𝑥)

𝑚2(𝑥)
− [𝛼(𝛼 + 𝛽 + 1) + (𝛽 +

1)]
𝑚′2

(𝑥)

𝑚3(𝑥)
                                     (18) 

 
where, 𝛼, 𝛽 are ambiguity parameters. Applying the 
following transformation (Tezcan et al., 2008) on Eq. 
17: 
 
𝜑(𝑥) = 𝑚𝜂(𝑥)𝜓(𝑥)                  (19) 

 
where,  
 
𝜑′(𝑥) = 𝑚𝜂−1(𝑥)[𝑚(𝑥)𝜓′(𝑥) + 𝜂𝑚′(𝑥)𝜓(𝑥)]                (20) 

 
and 
 
𝜑′′(𝑥) = 𝑚𝜂−2(𝑥)[𝜂(𝜂 − 1) 𝑚′2(𝑥)𝜓(𝑥) +
𝜂 𝑚(𝑥)(2𝑚′(𝑥)𝜓′(𝑥) + 𝜓(𝑥)𝑚′′(𝑥))+ 𝑚2(𝑥)𝜓′′(𝑥).     (21) 

 
Putting Eqs. 19, 20, and 21 into Eq. 17. we get 

 

[−
𝑑2

𝑑𝑥2
− 𝜂(𝜂 − 1)

𝑚′2(𝑥)

𝑚2(𝑥)
+ (−2𝜂 + 1)

𝑚′(𝑥)

𝑚(𝑥)

𝑑

𝑑𝑥
− 𝜂 

𝑚′′(𝑥)

𝑚(𝑥)
+

𝜂
𝑚′2(𝑥)

 𝑚2(𝑥)
+ (𝑉𝑒𝑓𝑓(𝑥) − 𝐸)] 𝜓 = 0.                 (22) 

 

Now, substituting the effective potential in Eq. 22, 
we get 
 

[−
𝑑2

𝑑𝑥2
− (2𝜂 − 1)

𝑚′(𝑥)

𝑚(𝑥)

𝑑

𝑑𝑥
+ (

1

2
(𝛽 + 1) − 𝜂)

𝑚′′(𝑥)

𝑚(𝑥)
−

(𝜂(𝜂 − 2) + 𝛼(𝛼 + 𝛽 + 1) + (𝛽 + 1))
𝑚′2

(𝑥)

𝑚2(𝑥)
+

𝑚(𝑥)(𝑉(𝑥) − 𝐸)] 𝜓 = 0.                   (23) 

 
This last equation is called the position-

dependent mass Schrödinger equation. In the next 
section, we are going to generalize these expressions 
to the q-deformed Woods-Saxon plus hyperbolic 
tangent potential case. 

4. Developing the q-deformed Woods-Saxon plus 
hyperbolic tangent potential in Schrödinger 
equation with position-dependent mass  

The q-deformed Woods-Saxon (Chabab et al., 
2012; Falaye et al., 2013; Okon et al., 2014) plus 
hyperbolic tangent potential is given by 
 

𝑉(𝑥) = −𝑉0
1

1+𝑞𝑒−2𝜆𝑥 + 𝑉1𝑡𝑎𝑛ℎ𝑞(𝜆𝑥)                 (24) 

 
where, 𝑉0 represents the potential well's depth, and 
the deformation parameter is 𝑞, which measures the 
system's level of non-extensivity. It reduces to the 
ordinary Woods-Saxon potential when 𝑞 = 1. 

Fig. 1 shows the plot of the Woods-Saxon plus 
hyperbolic tangent potential as a function of 𝑥 for 
different values of 𝜆. The Woods-Saxon plus 
hyperbolic tangent potential values for given values 
of 𝜆 is increase when moving to the right.  

Now, assuming the mass relation: 
 

𝑚(𝑥) =
𝑚1

(1+𝑞𝑒−2𝜆𝑥)
.                   (25) 

 

Fig. 2 shows the mass function as a sigmoid-like 
curve with smooth transitions between 0 and 1. 
When 𝜆 = 1 we see that the shift between 0 and 1 is 
gradual. As parameter values increase, the sigmoid 
function becomes steeper. Larger values of 𝜆 cause 
the curve to approach 0 and 1 faster as it moves 
away. 

 

 
Fig. 1: Woods-Saxon plus hyperbolic tangent potential for 

q = 1, V0 = 50, and V1 = 100 

 

 
Fig. 2: Plot of mass function m(x) for q = 0.5 , m1 = 1 

 
Where, 

 

𝑚′(𝑥) =
2𝑞𝜆𝑒−2𝜆𝑥

(1+𝑞𝑒−2𝜆𝑥)2                  (26) 

 

and 
 

𝑚′′(𝑥) = 2𝑞𝜆2[
4𝑞𝑒−4𝜆𝑥

(1+𝑞𝑒−2𝜆𝑥)
3 −

2𝑒−2𝜆𝑥

(1+𝑞𝑒−2𝜆𝑥)
2]               (27) 

 
then, the parameters 
 
𝑚′(𝑥)

𝑚(𝑥)
=

2𝑞𝜆𝑒−2𝜆𝑥

(1+𝑞𝑒−2𝜆𝑥)
                  (28) 

 
and 
 
𝑚′′(𝑥)

𝑚(𝑥)
= 2𝑞𝜆2 [

4𝑞𝑒−4𝜆𝑥

(1+𝑞𝑒−2𝜆𝑥)
2 −

2𝑒−2𝜆𝑥

(1+𝑞𝑒−2𝜆𝑥)
].               (29) 

 
Now, putting Eqs. 24, 25, 28 and 29 into Eq. 23 
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[−
𝑑2

𝑑𝑥2 − (2𝜂 − 1)
2𝑞𝜆𝑒−2𝜆𝑥

(1+𝑞𝑒−2𝜆𝑥)

𝑑

𝑑𝑥
+ (

1

2
(𝛽 + 1) −

𝜂) 2𝑞𝜆2[
4𝑞𝑒−4𝜆𝑥

(1+𝑞𝑒−2𝜆𝑥)
2 −

2𝑒−2𝜆𝑥

(1+𝑞𝑒−2𝜆𝑥)
] − (𝜂(𝜂 − 2) +

𝛼(𝛼 + 𝛽 + 1) + (𝛽 + 1))
4𝑞2𝜆2𝑒−4𝜆𝑥

(1+𝑞𝑒−2𝜆𝑥)2
+

𝑚1

(1+𝑞𝑒−2𝜆𝑥)
(−𝑉0

1

1+𝑞𝑒−2𝜆𝑥
+ 𝑉1𝑡𝑎𝑛ℎ𝑞(𝜆𝑥) − 𝐸)] 𝜓 = 0.      (30) 

 
We do the variable changing, so this variable 

changing to convert Eq. 23 into Nikiforov-Uvarov 
equation. 
  

𝑠 = 𝑚(𝑥) =
1

(1+𝑞𝑒−2𝜆𝑥)
, (0 ≤  𝑠 ≤  1)                                 (31) 

 
then  
 

𝑠 + 𝑠𝑞𝑒−2𝜆𝑥 = 1                  (32) 

 
so that  
 
(1 − 𝑠) = 𝑠𝑞𝑒−2𝜆𝑥                   (33) 
 

using Eq. 32 into Eq. 28  
 
𝑚′(𝑥)

𝑚(𝑥)
= 2𝜆(1 − 𝑠).                  (34) 

 

Now, using Eq. 33 into Eq. 29, we get  
 
𝑚′′(𝑥)

𝑚(𝑥)
= 2𝜆2[4(1 − 2s + 𝑠2) − 2s + s]                (35) 

 
then   
 
𝑚′′(𝑥)

𝑚(𝑥)
= 4𝜆2(1 − 3s + 2𝑠2)                 (36) 

 

so we have  
 
𝑚′′(𝑥)

𝑚(𝑥)
= 4𝜆2 (1 − 𝑠)(1 − 2𝑠)                 (37) 

 

setting that 
 

𝐴 = (𝜂(𝜂 − 2) + 𝛼(𝛼 + 𝛽 + 1) + (𝛽 + 1))  

𝐵 = (
1

2
(𝛽 + 1) − 𝜂)                 (38) 

ζ =
1

2
− 𝜂   

 

After using the above parameters, Eqs. 34, 37, 
and 38, Eq. 30 becomes.  
 
𝑑2𝜓

𝑑𝑠2 +
2𝜂−(2𝜂+1)𝑠

𝑠(1−𝑠)
 
𝑑𝜓

𝑑𝑠
+

1

𝑠2(1−𝑠)2
[𝐴(1 − 𝑠)2 − 𝐵(1 − 𝑠)(1 −

2𝑠) − 𝑚(𝑥)(𝑉(𝑥) −     𝐸)]𝜓 = 0.                 (39) 

 
Putting Eq. 24 and Eq. 31 and expanding  

 
𝑑2𝜓

𝑑𝑠2 +
2𝜂−(2𝜂+1)𝑠

𝑠(1−𝑠)
 
𝑑𝜓

𝑑𝑠
+

1

𝑠2(1−𝑠)2 [𝐴 − 2A𝑠 + 𝐴𝑠2 − 𝐵 + 3𝐵𝑠 −

2𝐵𝑠2 −
1

(1+𝑞𝑒−2𝜆𝑥)
(−𝑉0

1

1+𝑞𝑒−2𝜆𝑥 + 𝑉1𝑡𝑎𝑛ℎ𝑞(𝜆𝑥) − 𝐸)] 𝜓 =

0.                   (40) 

 
By rearranging the terms inside the brackets in 

Eq. 40, we obtain the generalized hypergeometric-
type equation, which represents the parametric 
generalization of the NU approach. 

𝑑2𝜓

𝑑𝑠2
+

2𝜂−(2𝜂+1)𝑠

𝑠(1−𝑠)
 
𝑑𝜓

𝑑𝑠
+

1

𝑠2(1−𝑠)2
[(𝐴 − 2𝐵 +

𝑉0

4𝑞𝜆2
−

2𝑉1

4𝜆2
) 𝑠2 +

(−2𝐴 + 3𝐵 +
𝑉0

4𝑞𝜆2
−

𝑉1

4𝜆2
+

E

4𝜆2
) 𝑠 + (𝐴 − 𝐵)] 𝜓(𝑥) = 0 

                   (41) 

 
where,  
 

ξ1 = −𝐴 + 2𝐵 −
𝑉0

4𝑞𝜆2 +
2𝑉1

4𝜆2 

ξ2 = −2𝐴 + 3𝐵 +
𝑉0

4𝑞𝜆2
−

𝑉1

4𝜆2
+

E

4𝜆2
                (42) 

ξ3 = −𝐴 + 𝐵 

 
using these parameters, Eq. 41 becomes  
 
𝑑2𝜓

𝑑𝑠2
+

2𝜂−(2𝜂+1)𝑠

𝑠(1−𝑠)
 
𝑑𝜓

𝑑𝑠
+

1

𝑠2(1−𝑠)2
[−ξ1𝑠2 + ξ2𝑠 − ξ3]𝜓(𝑥) = 0.

                   (43) 
 

Comparing Eq. 43 with Eq. 2, we get  
 
�̃�(𝑠) = 2𝜂 − (2𝜂 + 1)𝑠, 𝜎(𝑠) = 𝑠(1 − 𝑠), �̃�(𝑠) = −ξ1𝑠2 +
ξ2𝑠 − ξ3.                   (44) 
 

After using the above polynomials into Eq. 10, we 
get  
 

𝜋(𝑠) = (
1

2
− 𝜂) (1 − 𝑠) ±

{
(𝜈 − 𝜀)𝑠 + 𝜀  ; 𝑘 = ξ2  − 2ξ3 + 2𝜈𝜀
(𝜈 + 𝜀)𝑠 − 𝜀  ;  𝑘 = ξ2 − 2ξ3 − 2𝜈𝜀

}                (45) 

 

where,  
 

𝜈2 =
𝑉1

4𝜆2 +
E

4𝜆2                  (46) 

 

and  
 

𝜀2 = −
1

2
(𝛽 +

1

2
) − 𝛼(𝛼 + 𝛽 + 1)                (47) 

 
we take  
 
𝑘 = ξ2 − 2ξ3 − 2𝜈𝜀                 (48) 
 

and using  
 

𝜋(𝑠) = (
1

2
− 𝜂) (1 − 𝑠) − (𝜈 + 𝜀)𝑠 + 𝜀.               (49) 

 
Now, calculating the polynomial 𝜏(𝑠) from Eq. 45 

by using Eq. 5  
 

𝜏(𝑠) = 2 (
1

2
− 𝜂) (1 − 𝑠) − 2((𝜈 + 𝜀)𝑠 + 𝜀) + 2𝜂 −

(2𝜂 + 1)𝑠                  (50) 

 
expanding the above equation  
 

𝜏(𝑠) = 1 − 𝑠 − 2𝜂 + 2𝜂𝑠 − 2((𝜈 + 𝜀)𝑠 − 𝜀) + 2𝜂 − 2𝜂𝑠 − 𝑠

                   (51) 
 

we get 
 

𝜏(𝑠) = 1 − 2𝑠 − 2((𝜈 + 𝜀)𝑠 − 𝜀),                (52) 

 
and its derivative   
 
𝜏′(𝑠) = −(2 + 2𝜈 + 2𝜀).                 (53) 
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Now, from Eqs. 11 and 12 
 
𝜆 = 𝜆𝑛 = −𝑛 (−2 − 2(𝜈 + 𝜀)) + 𝑛(𝑛 − 1)               (54) 

 
and  
 

𝜆 = ξ1 − (𝜈 + 𝜀)2 − (𝜈 + 𝜀) + 𝜂2 −
1

4
                (55) 

 
after comparing Eq. 54 with Eq. 55, we have  
 

(𝜈 + 𝜀) = − (𝑛 +
1

2
) ± √ξ1 + 𝜂2.                (56) 

 
Now using Eqs. 42, 46, and 47, then two energy 

levels become  
 

𝐸𝑛 = −4𝜆2 [(𝑛 +
1

2
) ± √

2𝑞𝑉1−𝑉0

4𝑞𝜆2
− 𝛼(𝛼 + 𝛽 + 1) −

 √−
1

2
(𝛽 +

1

2
) − 𝛼(𝛼 + 𝛽 + 1)]

2

, (0 ≤ 𝑛 < ∞)               (57) 

 

Table 1 and Table 2 represent the numerical 
results for the values of the energy levels at different 
values of the parameter 𝜆. 

 
Table 1: Numerical outcomes of energy spectra for q =

0.5 , α = 0, β = −1 , V0 = 50, and V1 = 100 
Energy 𝐸0 𝐸1 𝐸2 𝐸3 
𝜆 = 1 −100 −144 −196 −256 
𝜆 = 2 −100 −196 −324 −484 
𝜆 = 3 −100 −256 −484 −784 
𝜆 = 4 −100 −324 −676 −1156 

 
Table 2: Numerical outcomes of energy spectra for q =

1, α = 0 , β = −1 , V0 = 50, and V1 = 100 
Energy 𝐸0 𝐸1 𝐸2 𝐸3 
𝜆 = 1 −150 −202.989 −263.979 −332.969 
𝜆 = 2 −150 −263.979 −409.959 −587.938 
𝜆 = 3 −150 −332.969 −587.938 −914.908 
𝜆 = 4 −150 −409.959 −797.91 −1313.877 

 

To find 𝜌(𝑠) the weight function, we use Eqs. 8, 
44, and 52, so we get. 
 
𝑑

𝑑𝑠
[(𝑠 − 𝑠2)𝜌(𝑠)] = [1 − 2𝑠 − 2((𝜈 + 𝜀)𝑠 − 𝜀)] 𝜌(𝑠)      (58) 

 
expanding the left-hand term  
 
(1 − 2𝑠)𝜌(𝑠) + (𝑠 − 𝑠2)𝜌′(𝑠) = 𝜌(𝑠) − [2𝑠 − 2((𝜈 + 𝜀)𝑠 −

𝜀)]𝜌(𝑠)                   (59) 

 

thus  
 
(𝑠 − 𝑠2)𝜌′(𝑠) + [2((𝜈 + 𝜀)𝑠 − 2𝜀)]𝜌(𝑠) = 0               (60) 

 

and then  
 

𝜌′(𝑠) +
[2((𝜈+𝜀)𝑠−2𝜀)]

(𝑠−𝑠2)
𝜌(𝑠) = 0.                (61) 

 
The above equation is a first-order differential 

equation; after solving it, we get the weight function. 
 
𝜌(𝑠) = 𝑠2𝜀(1 − 𝑠)2𝜈 .                 (62) 

 
Using the weight function yields in Eq. 62, we 

defined the solution of 𝑦 from Eq. 7 

𝑦𝑛(𝑠) =
𝐶𝑛

𝑠2𝜀(1−𝑠)2𝜈

𝑑𝑛

𝑑𝑠𝑛 [(𝑠(1 − 𝑠))𝑛𝑠2𝜀(1 − 𝑠)2𝜈]               (63) 

 
thus   
 

𝑦𝑛(𝑠) = 𝐶𝑛𝑠−2𝜀(1 − 𝑠)−2𝜈 𝑑𝑛

𝑑𝑠𝑛
[𝑠𝑛+2𝜀(1 − 𝑠)𝑛+2𝜈]           (64) 

 
and from Eqs. 44, 45, and 62, we get  
 

𝜑(𝑠) = 𝑠
(

1

2
−𝜂)+𝜀

(1 − 𝑠)𝜈 .                 (65) 
 

By using the Jacobi polynomial's properties (Von 
Roos, 1983) 
 

𝑃𝑛
(𝜁,𝜉)

(𝑥) =
(−1)𝑛(1−𝑥)−𝜁(1+𝑥)−𝜉

2𝑛𝑛!

𝑑𝑛

𝑑𝑥𝑛
[(1 − 𝑥)𝑛+𝜁(1 + 𝑥)𝑛+𝜉]

                   (66)  
 

and   
 

𝑃𝑛
(2𝜁,2𝜉)

(1 − 2𝑠) =
(−2)𝑛(𝑠)−2𝜁(1−𝑠)−2𝜉

2𝑛𝑛!

𝑑𝑛

𝑑𝑥𝑛
[𝑠𝑛+2𝜁(1 − 𝑠)𝑛+2𝜉]

                   (67) 
 

where, 𝑃𝑛
(𝑎,𝑏)(𝑥) , (𝑎 > −1 , 𝑏 > −1) represents the 

Jacobi polynomial. Then we have  
 

𝑦𝑛(𝑠) = 𝑃𝑛
(2𝜀,2𝜈)

(1 − 2𝑠).                 (68) 
 

The wave functions 𝜓𝑛(𝑠) are obtained from Eqs. 
3, 7, 62, and 65 has the following form  
 

𝜓𝑛(𝑠) = 𝑁𝑛 𝑠
(

1

2
−𝜂)+𝜀(1 − 𝑠)𝜈𝑃𝑛

(2𝜀,2𝜈)(1 − 2𝑠).                (69) 
 

The normalization constant is denoted by 𝑁𝑛.One 
can find it by examining the normalizing condition. 
 

∫ |𝜓𝑛(𝑥)|2∞

−∞
 𝑑𝑥 = 1 =  ∫ |𝜓𝑛(𝑠)|21

0
 𝑑𝑠               (70) 

5. Results and discussion 

The theoretical framework for analyzing 
quantum systems with complex potentials is 
extended by deriving the position-dependent mass 
Schrödinger equation and solving it using the 
Nikiforov-Uvarov method. This framework makes it 
possible to study systems with non-standard 
potentials and position-dependent masses, which 
are important in many branches of physics. The 
solutions that were obtained are represented in Figs. 
3 and 4 provide a physical description of the 
particle's quantum behavior when the q-deformed 
Woods-Saxon plus hyperbolic tangent potential is 
present. The system's fundamental features and 
behavior are clarified by the energy eigenvalues and 
wave functions, which provide insights into the 
bound states and scattering aspects of the system. 
Potential uses for the findings in nuclear and atomic 
physics, as well as other areas of theoretical physics, 
are indicated by the paper's results. Understanding 
the behavior of particles in complex potentials 
advances understanding in these domains and could 
have consequences for practical quantum technology 
applications. This research provides new 
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opportunities for investigating quantum systems 
with non-standard potentials and position-
dependent masses. To improve prediction accuracy 
and expand the reach of the theoretical framework, 
future research could investigate extending the 
existing model to higher dimensions, different kinds 
of potentials, or include more quantum effects. 

  

 
Fig. 3: Woods-Saxon plus hyperbolic tangent energy for 

q = 0.5 , α = 0 , β = −1 , V0 = 50, and V1 = 100 
 

 
Fig. 4: Woods-Saxon plus hyperbolic tangent energy for 

q = 1 , α = 0 , β = −1 , V0 = 50, and V1 = 100 

6. Conclusions  

The solution of the mass variable Schrödinger 
equation with a Woods-Saxon plus hyperbolic 
tangent potential is obtained in this study by 
applying the Nikiforov-Uvarov method. The Jacobi 
polynomials are used to represent the wave function, 
and the energy eigenvalues are determined 
analytically. One of the toy models that can be used 
in various branches of physics, including quantum 
field theories and solid-states physics, is the 
hyperbolic tangent potential. 
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