Contents lists available at Science-Gate

International Journal of Advanced and Applied Sciences

Journal homepage: http://www.science-gate.com/IJAAS.html

Strongly D^p_{α} –closed graphs in bitopological spaces

CrossMark

Eman Almuhur^{1,*}, Manal Al-Labadi², Maysoon Qousini³, Raeesa Bashir⁴

¹Department of Mathematics, Faculty of Science, Applied Science Private University, Amman, Jordan ²Department of Mathematics, Faculty of Arts and Sciences, University of Petra, Amman, Jordan ³Department of Mathematics, Faculty of Science and Information Technology, Al-Zaytoonah University of Jordan, Amman, Jordan ⁴Department of Mathematics, National Institute of Technology, Jammu and Kashmir, India

ARTICLE INFO

Article history:Received 17 May 2024Received in revised form4 September 2024Accepted 6 September 2024Keywords: D^p_{α} - open D^p_{α} -closedBitopological spaces D^p_{α} -continuous functionsGraph G(f)

ABSTRACT

In this paper, we introduce the concepts of D_{α}^{p} –open, D_{α}^{p} –closed subsets, pairwise– α –closed, pairwise–g–closed subsets, pairwise–strongly α –closed graph G(f) and strongly D_{α}^{p} –closed graph of bitopological spaces. We showed that each closed graph is D_{α}^{p} –closed. In addition, the concepts of D_{α}^{p} –continuous, open, and closed functions are defined, and the relations between $\tau_{p} - \alpha$, $\tau_{p} - g$, and D_{α}^{p} –continuous functions are clarified. The fact that strongly D_{α}^{p} –closed graph is D_{α}^{p} –closed is illustrated. We studied when the graph G(f) is p –strongly closed and $p - D_{\alpha}$ –closed subsets of the bitopological space (X, τ_{1}, τ_{2}). Moreover, the notions of D_{α}^{i} –interior of a subset of X and D_{α}^{i} –closure are defined.

© 2024 The Authors. Published by IASE. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Several sorts of generalized open sets in topological spaces like semi-open, pre-open, and β –open sets were studied by lots of mathematicians (Al-Saadi and Al-Malki, 2024). Sarsak (2013, 2022) covered certain features of generalized open sets in generalized topological spaces (GTSs), which are an essential part of general topology. A key problem in real analysis and general topology is the study of variously modified versions of continuity, separation axioms, and other ideas utilizing extended open sets. The most well-known and inspiring ideas are those of α –open sets, introduced by Njästad (1965), and (g - closed)generalized closed or subsets, introduced by Levine (1970). Both ideas have been thoroughly studied in the literature. Since then, mathematicians have concentrated manv on generalizing many topological concepts through the usage of α –open sets and generalized closed sets.

Kelly (1963) published a paper named "Bitopological Spaces," which marked the beginning of the study of bitopological spaces. Since then, several articles have been submitted that attempt to extend topological concepts to bitopological ones. A

* Corresponding Author.

Corresponding author's ORCID profile:

https://orcid.org/0000-0002-9837-4179

(http://creativecommons.org/licenses/by-nc-nd/4.0/)

non-empty set *X* with the two topologies τ_1 and τ_2 is called a bitopological space, as is the triple (*X*, τ_1 , τ_2), or just *X*. The concept of generalized topological spaces was introduced by Cs'asz'ar in the 20th century, and other mathematicians worldwide have studied it. Consequently, mathematicians took a different tack and tried to apply several topological ideas to this new field.

Dunham (1982) defined a new topological space (X, τ^*) by using g –closed subsets of X to define a new closure operator. He did this by transferring regularity conditions from a topological space (X, τ) to separation conditions in the new topological space (X, τ^*) . The concept of an operation on topological spaces was introduced, and α –closed graphs of an operation were introduced by Kasahara (1979). Ogata (1991) established the concept of τ_{γ} , which is the set of all γ –open sets, and introduced the operation α as γ –operation.

In section 2, we study D_{α} – Sets in bitopological space (X, τ_1, τ_2) , features and properties such as the class of all D_{α} –open sets are bounded between g –open sets and the class of all α –open sets, introduce D_{α}^{p} –continuous function, and illustrate the relation between both of $\tau_p - \alpha$ –continuous and $\tau_p - g$ –continuous functions and D_{α}^{p} –continuous function.

2. D_{α} – Sets in bitopological space (X, τ_1, τ_2)

 D_{α} –open sets are a novel class of sets that were developed and investigated in topological spaces by

Email Address: e_almuhur@asu.edu.jo (E. Almuhur)

https://doi.org/10.21833/ijaas.2024.09.013

²³¹³⁻⁶²⁶X/© 2024 The Authors. Published by IASE. This is an open access article under the CC BY-NC-ND license

Sayed and Khalil (2006). Almuhur and Al-Labadi (2021) studied D_{α} –open and D_{α} –closed functions in bitopological spaces. They investigated whether subsets of the bitopological space (X, τ_1, τ_2) are pairwise $-D_{\alpha}$ -closed and when the graph G(f) is pairwise-strongly closed. Furthermore, they define D^i_{α} –closure and D^i_{α} –interior of subsets of *X*.

The class of all D_{α} –open sets is bounded between g –open sets and the class of all α –open sets. In addition, they presented and examined D_{α} -continuous, D_{α} -open, and D_{α} -closed functions between topological spaces as applications. A subset *U* of a bitopological space (X, τ_1, τ_2) is called $\tau_1 - g$ -closed (Almuhur et al., 2023) if $Cl_{\tau_1}(U) \subset$ $O_{\tau_2}(U) \subset \tau_2$ and U is $\tau_2 - g$ -closed if $Cl_{\tau_2}(U) \subset$ $\mathcal{O}_{\tau_1}(U) \subset \tau_1.$

If *U* is $\tau_1 - g$ –closed and $\tau_2 - g$ –closed, then it will be a pairwise -g –closed subset and hence, X – *U* is pairwise-g –open.

Theorem 2.1: In a bitopological space (X, τ_1, τ_2) , if $\{F_i: i \in \mathbb{N}\}$ is a family of $\tau_p - g$ -closed sets, then $\bigcup_{i \in \mathbb{N}} F_i$ is τ_p –closed (Sarsak, 2013; 2022).

Definition 2.2: For the bitopological space (X, τ_1, τ_2) , if $U \subseteq X$, then:

(i) If $U \subset int$ (cl (int (U)), then U is a $\tau_p - \alpha$ –open subset of X.

(ii) If $U \subset cl$ (*int*(cl(U))), then U is $\tau_p - \alpha$ -closed.

(iii) If cl (U) \subset V for some τ_p –open (τ_p – g -closed) subset V of (X, τ_i) , V is τ_p -generalized closed ($\tau_p - g$ –closed)

(iv) $GO(X) = \{U: U \text{ is } \tau_p - g - open\}$

(v) $GC(X) = \{F: F \text{ is } \tau_p - g - closed\}$

(vi) If $\widetilde{U} = \cap \{U: U \text{ is } \tau_p - \alpha - open, U \subseteq 0\}$ for some *O* a $\tau_p - \alpha$ – open in (*X*, τ_i), then $\widetilde{U} = int_{\alpha_p}(U)$.

(vii) If $\tilde{F} = \cap \{F: F \text{ is } \tau_p - \alpha - closed, K \subset F\}$ for some K a $\tau_p - \alpha - closed$ in (X, τ_i) , then $\tilde{F} =$ $cl_{\alpha_p}(K).$

Definition 2.3: If *f* is a function from (X, τ_1, τ_2) to (Y, σ_1, σ_2) , then:

i) The graph of f (denoted by G(f)) is the subspace $\{(x, f(x)): x \in X\}$ of $X \times Y$

ii) The function f is pairwise-closed if G(f) is a (τ_i, σ_i) –closed subset of $(X, \tau_i) \times (Y, \sigma_i) \forall i = 1, 2$. iii) The function f is pairwise-strongly closed (pairwise–strongly α –closed) graph if \forall (x, y) \in $G(f) (\forall (x, y) \in X \times Y - G(f)), \exists U_1 \text{ and } U_2 \text{ such}$ that $x \in U_1$ and $(U_1 \times cl_j(U_2)) \cap G(f)$ is empty for some U_1 a τ_p –open subset of X and U_2 a σ_p –open subset of Y.

Definition 2.4: If *F* is a subset of (X, τ_1, τ_2) , then *F* is D^p_{α} -closed if $cl^*(int(cl(F))) \subseteq F$.

If *F* is $\tau_p - D_\alpha$ -closed, then X - F is τ_p - D_{α} -open. *F* is D_{α}^{p} -closed if it is $\tau_{p} - D_{\alpha}$ -closed, and the set of all D^p_{α} –closed subsets is denoted by $D^p_{\alpha} - C(X).$

Theorem 2.5: The graph G(f) is pairwise-strongly α -closed if and only if $\forall (a, b) \in X \times Y - G(f)$ for some U_1 a τ_p –open subset of X and U_2 a σ_p –open subset of *Y* containing *a* and *b*, respectively such that $f(U_1) \cap cl(U_2)$ is empty.

Theorem 2.6: If *K* is a subset of (X, τ_1, τ_2) , then *K* is D^p_{α} –closed if it is $\tau_p - \alpha$ –closed.

Proof: Suppose that *K* is $\tau_p - \alpha$ –closed subset of *X*, then $cl^*(K) \subset cl(K)$.

So, $cl(int(cl(K))) \subset K$, hence $cl^*(int(cl(K))) \subset cl^*$ $(int(cl^*(K))) \subset K.$

Thus, F is $\tau_p - D_\alpha$ -closed and so it is D^p_{α} -closed.

Theorem 2.7: If A is a D^p_{α} -closed subset of (*X*, τ_1 , τ_2), then it is pairwise–*g* –closed.

Proof: Suppose that *A* is $\tau_p - g$ -closed, then, $cl^*(A) = A$. Hence, $int(cl^*(A)) \subset cl^*(A)$. Thus, $cl^*(int(cl^*(A))) \subset cl^*(cl^*(A) \subset cl^*(A) = A$. Therefore, A is D^p_α –closed.

Corollary 2.8: If *K* is a pairwise–*g* –closed subset of (X, τ_1, τ_2) such that $int(cl^*(K)) \subset F \subset K$ for some $F \subset X$, then *K* is D^p_α –closed.

Proof: Since K is pairwise-closed subset of $X, cl^*(K) = K.$ So, $cl^*(int(cl^*(F))) \subset cl^*(int^*(F)) \subset$ *K* for some $F \subset X$. Thus, *K* is D^p_α –closed.

Theorem 2.9: Arbitrary intersection of D^p_{α} -closed sets is D^p_{α} –closed.

Proof: Let $\tilde{F} = \{F_{\gamma} : \gamma \in \Gamma\}$ be a family of D_{α}^{p} –closed subsets of the topological space (X, τ^1, τ^2) , then, $cl^*(int(cl^*(F_{\gamma}))) \subset F_{\gamma} \forall \gamma \in \Gamma.$ Now, $\bigcap_{\gamma \in \Gamma} F_{\gamma} \subset \gamma \in \Gamma$ $\forall \gamma \in \Gamma$. Hence, $cl^*(int(cl^*(F_{\gamma}))) \subset \bigcap_{\gamma \in \Gamma} cl(F_{\gamma})$. Thus, $cl^*\left(int\left(cl^*(F_{\gamma})\right)\right) \subset \bigcap_{\gamma \in \Gamma} cl(F_{\gamma}) \subset cl^*\left(int\left(cl^*(F_{\gamma})\right)\right) \subset$ $\bigcap_{\gamma \in \Gamma} cl(F_{\gamma}) \quad \forall \gamma \in \Gamma.$ Therefore, $\bigcap_{\gamma \in \Gamma} F_{\gamma}$ is D^p_{α} -closed.

Theorem 2.10: If A_1 and A_2 are two subsets of (X, τ_1, τ_2) such that A_1 is D^p_{α} -closed and A_2 is pairwise $-\alpha$ -closed, then $A_1 \cap A_2$ is D^p_α -closed.

Corollary 2.11: If B_1 and B_2 are two subsets of (X, τ_1, τ_2) such that B_1 is D^p_{α} -closed and B_2 is pairwise -g -closed, then $F_1 \cap F_2$ is D^p_α -closed.

Lemma 2.12: In the bitopological space (X, τ_1, τ_2) , if *A* is a subset of *X*, then:

(i)
$$cl(A) = X - int(X - A)$$
.

(ii) int(A) = X - cl(X - A).

Theorem 2.13: In (X, τ_1, τ_2) , a subset U is D^p_{α} –open if and only if $U \subset int(cl^*(int(U)))$.

Proof: Let *U* be a D^p_{α} -open subset of *X*, then, X - Uis D^p_{α} -closed and $cl^*(int(cl^*(U)) \subset X - U$. Hence, we have $U \subset int^*(cl(int^*(U)))$. Now, if $U \subset int^*(cl(int^*(U)))$. Then, $X - int^*(cl(int^*(U))) \subset X - U$. Therefore, $int^*(cl(int^*(U))) \subset X - U$. Thus, X - U is D^p_{α} -closed and *U* is D^p_{α} -open.

Corollary 2.13: In the bitopological space (X, τ_1, τ_2) , a subset U is D^p_{α} –open if $\exists W$ a pairwise–g –open subset such that $W \subset U \subset int^*(cl(W))$, then U is D^p_{α} –open.

Proof: Let *W* be a pairwise-*g* -open subset of *X*, hence X - W is pairwise-*g*-closed and $X - int^*(cl_j(X - W)) \subset X - U \subset X - W$. So, $cl^*(int(X - W)) \subset X - U \subset X - W$ and X - U is D^p_{α} -closed. Therefore, U is D^p_{α} -open.

Corollary 2.14: Every pairwise $-\alpha$ –open (pairwise-g –open) is D^p_{α} –open.

Corollary 2.15: An arbitrary union of the D^p_{α} –open set is D^p_{α} –open.

Corollary 2.16: The union of D^p_{α} –open set and pairwise– α –open set is D^p_{α} –open.

Corollary 2.17: The union of the D^p_{α} –open set and the pairwise–g –open set is D^p_{α} –open.

Definition 2.18: In the bitopological space (X, τ_1, τ_2) , the D^p_{α} – interior of a subset *B* of *X* is denoted by $D^p_{\alpha} - int_p(B)$ and $D^p_{\alpha} - int_p(B) = \bigcup_{\gamma \in \Gamma} \{V_{\gamma} : V_{\gamma} \in pairwise - D_{\alpha}O(X), V_{\gamma} \subset B\}.$

Definition 2.19: The D^p_{α} -closure of a subset *B* of the bitopological space (X, τ_1, τ_2) is denoted by $D^p_{\alpha} - cl(B)$ such that $D^p_{\alpha} - cl(B) = \bigcap_{\gamma \in \Gamma} \{K_{\gamma} : K_{\gamma} \in pairwise - D_{\alpha}C(X), B \subset K_{\gamma}\}.$

Lemma 2.20: In (X, τ_1, τ_2) , if $B \subset X$, then $X - (D_{\alpha}^p - int(B)) = D_{\alpha}^p - cl(B)$ and $X - (D_{\alpha}^p - cl(B)) = D_{\alpha}^p - int(B)$.

Theorem 2.21: In (X, τ_1, τ_2) , if *U* is a subset of *X*, then:

(i) $D_{\alpha}^{p} - int(\phi) = \phi$ and $D_{\alpha}^{p} - int(X) = X$. (ii) U is $p - D_{\alpha}$ open iff $D_{\alpha}^{p} - int(U) = U$ and $D_{\alpha}^{p} - int(U) = U$. (iii) $p - \alpha - int(U) \subset D_{\alpha}^{p} - int(U) \subset U$. (iv) $int^{*}(U) \subset D_{\alpha}^{p} - int(U)$ (v) $D_{\alpha}^{p} - int(D_{\alpha}^{p} - int(U)) = D_{\alpha}^{p} - int(U)$. **Theorem 2.22:** In (X, τ_1, τ_2) , if *A*, *B* are two subsets of *X*, then:

(i) If $A \subset B$, then $D_{\alpha}^{p} - int(A) \subset D_{\alpha}^{p} - int(B)$ (ii) $(D_{\alpha}^{p} - int(A)) \cup (D_{\alpha}^{p} - int(B)) \subset D_{\alpha}^{p} - int(A \cup B)$ (iii) $D_{\alpha}^{p} - int(A \cap B) \subset (D_{\alpha}^{p} - int(A)) \cap (D_{\alpha}^{p} - int(B)).$

Theorem 2.23: In (X, τ_1, τ_2) , if $U \subset X$, then:

(i)
$$D^p_{\alpha} - int(U) = U \cap int^* (cl(int^*(U))).$$

(ii) $D^p_{\alpha} - cl(U) = A \cup int^* (cl(int^*(A))).$

Proof:

(i) $D_{\alpha}^{p} - int(U)$ is $D_{\alpha}^{p} - open$ and $D_{\alpha}^{p} - int(U) \subset U$. So, $D_{\alpha}^{p} - int(U) \subset int^{*} \left(cl(D_{\alpha}^{p} - int(U)) \right) \subset int^{*} (cl(int^{*}(U)))$ $int^{*} (cl(int^{*}(U)) \subset U \cup int^{*} \left(cl(int^{*}(U)) \right)$. So, $U \cup int^{*} \left(cl(int^{*}(U)) \right)$ is $D_{\alpha}^{p} - open$ $U \cup int^{*} \left(cl(int^{*}(U)) \right) \subset D_{\alpha}^{p} - int(U)$. Thus, $D_{\alpha}^{p} - int(U) = U \cap int^{*} \left(cl(int^{*}(U)) \right)$. (ii) $D_{\alpha}^{p} - cl(U) = X - int(X - U) = X - (X - U) = X - (X - U) \cup (X - int^{*} \left(cl(int^{*}(X - U)) \right)) = U \cup cl^{*} \left(int(cl^{*}(U)) \right)$

Definition 2.24: In the bitopological spaces (X, τ_1, τ_2) and (Y, σ_1, σ_2) , the function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is said to be D^p_α –continuous if the inverse image of each σ_p –open set in Y is D^p_α –open in X.

Lemma 2.25: Each $\tau_p - \alpha$ –continuous function is D^p_{α} –continuous.

Lemma 2.26: Each $\tau_p - g$ –continuous function is D^p_{α} –continuous.

Theorem 2.27: If $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, and $\forall U \subset X, V \subset Y$, then the following are equivalent:

(1) f is $\tau_p - D_\alpha$ -continuous.

(2) For each $V \ge \tau_p$ –open subset of Y and $\forall x \in X$ such that $f(x) \in V$, $\exists U \ge \tau_j - D_\alpha$ –open subset of X containing $f^{-1}(V)$ such that $f(U) \subset V$.

(3) The inverse image of a σ_p -closed subset of *Y* is τ_p -closed subset of *X*.

 $\begin{array}{l} (4) \ f(D_{\alpha}^{p} - int(U)) \subset cl(f(U)) \\ (5) \ D_{\alpha}^{p} - cl(\ f^{-1}(V)) \subset f^{-1}(cl(V)). \\ (6) \ f^{-1}(int(V)) \subset D_{\alpha}^{p} - int(f^{-1}(V)). \end{array}$

Proof: (1) \rightarrow (2) $f^{-1}(V) \in D^p_\alpha O(X) \forall V \subseteq Y$. If $b \in f^{-1}(V)$, then $f(f^{-1}(V)) \subset V \forall b \in X$.

(3) \rightarrow (4) Assume that *K* is a *p*-closed subset of *Y* and $K \subset f(U)$. Now, $U \subset f^{-1}(K)$ is $p - D_{\alpha}$ - closed subset of *X*. So, $D_{\alpha}^{p} - cl(U) \subset D_{\alpha}^{p} - cl(f^{-1}(K)) = f^{-1}(K)$. Hence, $f(D_{\alpha}^{p} - cl(U)) \subset K$. Thus, $f(D_{\alpha}^{p} - cl(f(K)) \subset cl(f(U))$.

(4)→(5) Let *F* be a subset of *Y*. Then $f(D_{\alpha}^{p} - cl(f^{-1}(F)) \subset cl(f(f^{-1}(F)) \subset cl_{i}(F)$. Hence, $D_{\alpha}^{p} - cl((f^{-1}(F)) \subset clf^{-1}(F)$. Therefore, $D_{\alpha}^{p} - cl((f^{-1}(F)) \subset f^{-1}(cl(F))$. (5)→(6) Assume that *F* be a subset of *Y*, then $D_{\alpha}^{p} - cl(f^{-1}(Y - F)) \subset f^{-1}(D_{\alpha}^{p} - cl(Y - F))$. Hence, $D_{\alpha}^{p} - cl(X - f^{-1}(F)) \subset f^{-1}(Y - int(F))$. Therefore, $X - D_{\alpha}^{p} - int(f^{-1}(F)) \subset X - f^{-1}(int(F))$. Hence, $f^{-1}(int(F)) \subset D_{\alpha}^{p} - int(f^{-1}(F))$. (6)→(1) Assume that *M* be a *p* - open subset of *Y*. So

(6) \rightarrow (1) Assume that *M* be a *p* -open subset of *Y*. So $f^{-1}(int(M)) \subset D^p_{\alpha} - int(f^{-1}(M))$. So, $f^{-1}(int(M)) \subset D^p_{\alpha} - int(f^{-1}(M))$. Hence, $f^{-1}(M)$ is an $p - D_{\alpha}$ -open. Thus, *f* is a $p - D_{\alpha}$ -continuous function.

Theorem 2.28: The composition of D^p_{α} – continuous function and τ_p – continuous function is D^p_{α} – continuous.

Definition 2.29: The function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ has D^p_{α} -closed graph if $\forall (a, b) \in (X \times Y) - G(f)$, $\exists W_1 \in \tau_p - D^p_{\alpha}O(X, a)$ and $W_2 \in GO(Y, b): (W_1 \times cl^*(W_2)) \cap G(f)$ is empty.

Lemma 2.30: Each closed graph is D^p_{α} –closed.

Theorem 2.31: The function $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $\tau_p - D_\alpha$ -closed graph if and only if $\forall (a, b) \in (X \times Y) - G(f), \exists U_1 \in \tau_p - D^p_\alpha O(X, a)$ and $U_2 \in GO(Y, b): (U_1 \times cl^*(U_2)) \cap G(f)$ is empty.

Proof: Assume that $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is a D_a^p -closed graph. So, $\forall (a, b) \in (X \times Y) - G(f), \exists U_1 \in \tau_p - D_a^p O(X, a)$ and $U_2 \in GO(Y, b)$ such that $(U \times cl^*(U_2)) \cap G(f)$ is empty. Hence, $f_p(x) \in f_p(U_1)$ and $b \in cl^*(U_2)$. Now, $b \neq f_i(a)$, hence $f_i(U_1) \cap cl^*(U_2)$ is empty. Conversely, assume that $(a, b) \in (X \times Y) - G(f), \exists U_1 \in \tau_p - D_a^p O(X, a)$ and $U_2 \in GO(Y, b)$: $(U \times cl^*(U_2)) \cap G(f)$ is empty. Thus, $f_p(a) \neq b$ and $f_p(U_1) \cap cl^*(U_2)$ is empty.

Theorem 2.32: The function $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is $\tau_p - D_\alpha$ -closed graph if $\forall (a, b) \in (X \times Y) - G(f)$, $\exists U_1 \in \tau_p - D_\alpha^p O(X, a)$ and $U_2 \in \tau_p - D_\alpha(Y, b)$: $(U_1 \times cl^*(U_2) \cap G(f)$ is empty.

Proof: Assume that *f* is a D_{α}^{p} -closed graph, then $\forall (a, b) \in (X \times Y) - G(f), \exists U_{1} \in \tau_{p} - D_{\alpha}^{p}O(X, a)$ and $U_{2} \in GO(Y, b)$. But $\tau_{p} - g$ -subset of *X* is $\tau_{p} - D_{\alpha}$ -open, then $D_{\alpha}^{p} - cl(U_{2}) \subset cl(U_{2})$. Thus, $(U_{1} \times D_{\alpha}^{p} - cl(U_{2})) \cap G(f)$ is empty.

Corollary 2.33: The function $f(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ is D^p_{α} -closed graph $\forall (a, b) \in (X \times Y) - G(f), \exists W_1 \in D^p_{\alpha} O(X, a)$ and $W_2 \in D_{\alpha}$ $(Y, b) \cap W_1 \times D^p_{\alpha} - cl(W_2)) \cap G(f)$ is empty if $\forall (a, b) \in (X \times Y) - G(f), \exists U \in \tau_p - D^p_{\alpha} O(X, a)$ and $V \in \tau_p - D_{\alpha} - (Y, b)$: $f_p(U) \cap D^p_{\alpha} - cl(V)$ is empty.

Definition 2.34: The function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ has a strongly D^p_{α} –closed graph if

 $\forall (a,b) \in (X \times Y) - G(f), \exists W_1 \in D^p_\alpha O(X,a) \text{ and } W_2 \in O(Y,b): (W_1 \times cl(W_2)) \cap G(f) \text{ is empty.}$

Lemma 2.35: (i) The strongly D^p_{α} –closed graph is D^p_{α} –closed in (*X*, τ_1 , τ_2).

(ii) Each strongly $\tau_p - \alpha$ –closed graph is strongly D^p_{α} –closed graph in (*X*, τ_1 , τ_2).

Theorem 2.36: For the function $f: (X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$, the following are equivalent:

(i) *f* has a strongly D_{α}^{p} -closed graph. (ii) $\forall (a, b) \in (X \times Y) - G(f), \exists W_{1} \in D_{\alpha}^{p}O(X, a)$ and $W_{2} \in O(Y, b)$: $f(W_{1}) \cap cl(W_{2})$ is empty. (iii) $\forall (a, b) \in (X \times Y) - G(f), \exists W_{1} \in D_{\alpha}^{p}O(X, a)$ and $W_{2} \in O(Y, b)$: $(W_{1} \times cl(W_{2})) \cap G(f)$ is empty.

Corollary 2.37: If the function $f:(X, \tau_1, \tau_2) \rightarrow (Y, \sigma_1, \sigma_2)$ has a strongly D^p_α -closed graph, then $\forall a \in X, f(x) = \cap \{cl(V): V \in D^p_\alpha O(X, xa)\}.$

Proof: Assume that $f:(X, \tau_1, \tau_2) \to (Y, \sigma_1, \sigma_2)$ is a strongly D^p_{α} -closed graph, then $\exists b \neq f(\alpha): b \in \cap \{cl(V): V \in D^p_{\alpha}O(X, x)\}$. Hence, $b \in cl(f(V))$ for some $V \in D^p_{\alpha}O(X, x)$. So, $\forall W \in \alpha - O(Y, b)$, $W \cap f(V)$ is empty. Therefore, f(V) is non-empty and $f(V) \subset W \subset cl^p_{\alpha}(W)$ which is a contradiction since f has a strongly D^p_{α} -closed graph. Consequently, $a \in X$, $f(a) = \cap \{cl(V): V \in D^p_{\alpha}O(X, a)\}$.

Corollary 2.38: If $f:(X,\tau_1,\tau_2) \to (Y,\sigma_1,\sigma_2)$ is a D^p_{α} -continuous function, and *Y* is *p*-Housdorff, hence G(f) is strongly D^p_{α} -closed.

Proof: Assume that $(a, b) \in (X \times Y) - G(f)$. Now, because *Y* is *p*-Housdorff, $\exists U \in O(Y, b)$: $f(a) \notin cl(U)$. Since cl(U) is τ_p -closed, we have $Y - cl(U) \in O(Y, b)$. Therefore, $\exists W \in D^p_a O(X, xa: f(W) \subset Y - cl(U)$. Thus, $f(W) \cap cl(U)$ is empty. Consequently, G(f) has a strongly D^p_a -closed graph.

3. Conclusion

Every closed graph is D^p_{α} -closed and the $\tau_p - \alpha$ -closed subset is D^p_{α} -closed. The strongly D^p_{α} -closed graph is D^p_{α} -closed. The composition of D^p_{α} -continuous function and τ_p -continuous function is D^p_{α} -continuous. Moreover, each $\tau_p - g$ -continuous function is D^p_{α} -continuous.

Acknowledgment

The authors are grateful to the anonymous reviewers for their valuable comments.

Compliance with ethical standards

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

References

- Almuhur E, Qoqazeh H, Atoom A, and Abu-Alkishik N (2023). Pairwise D_{α} -open and D_{α} -closed functions in Bitopological spaces. Journal of Xi'an Shiyou University, Natural Sciences Edition, 66(5): 76-86. https://doi.org/10.17605/OSF.IO/R8KH6
- Almuhur EMAN and Al-Labadi M (2021). Pairwise strongly Lindelöf, pairwise nearly, almost and weakly Lindelöf bitopological spaces. WSEAS Transactions on Mathematics, 20(16): 152-158.

https://doi.org/10.37394/23206.2021.20.16

- Al-Saadi H and Al-Malki H (2024). Categories of open sets in generalized primal topological spaces. Mathematics, 12(2): 207. https://doi.org/10.3390/math12020207
- Dunham W (1982). A new closure operator for non-T₁ topologies. Kyungpook Mathematical Journal, 22(1): 55-60.
- Kasahara S (1979). Operation-compact spaces. Mathematica Japonica, 24: 97-105.

- Kelly J (1963). Bitopological spaces. Proceedings of the London Mathematical Society, 3(1): 71-89. https://doi.org/10.1007/978-3-662-41914-4
- Levine N (1970). Generalized closed sets in topology. Rendiconti del Circolo Matematico di Palermo, 19: 89-96. https://doi.org/10.1007/BF02843888
- Njåstad 0 (1965). On some classes of nearly open sets. Pacific Journal of Mathematics, 15(3): 961-970. https://doi.org/10.2140/pjm.1965.15.961
- Ogata H (1991). Operations on topological spaces and associated topology. Mathematica Japonica, 36(1): 175-184.
- Sarsak MS (2013). On μ-compact sets in μ-spaces. Questions Answers General Topology, 31: 49-57.
- Sarsak MS (2022). More properties of generalized open sets in generalized topological spaces. Demonstratio Mathematica, 55(1): 404-415. https://doi.org/10.1515/dema-2022-0027
- Sayed OR and Khalil AM (2016). Some applications of Dα-closed sets in topological spaces. Egyptian Journal of Basic and Applied Sciences, 3(1): 26-34. https://doi.org/10.1016/j.ejbas.2015.07.005