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This study investigates the dynamics of dark solitons and energy distribution 
in electromagnetic waves propagating through optical fibers, focusing on the 
impact of key parameters on energy retention. While previous research has 
emphasized frequency and dispersion, this work also examines the effect of 
attenuation on soliton behavior. The energy distribution is analyzed using 
Hamiltonian dynamics derived from the cubic-quintic discrete nonlinear 
Schrödinger (CQ DNLS) equation, with stationary solutions obtained via the 
Trust Region Dogleg method and the fourth-order Runge-Kutta (RK4) 
method used for dynamic simulations. Results reveal that frequency and 
dispersion parameters enhance wave amplitude and energy, whereas high 
attenuation significantly reduces wave intensity and energy during 
propagation. Balancing these effects is critical for maintaining energy 
stability and providing insights into material selection for optical fibers with 
low attenuation properties. 
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1. Introduction 

*The rapid expansion of information in the 
modern era has created a significant strain on the 
communication infrastructure. To address this issue 
and satisfy the information needs of society, optical 
fiber technology has emerged and evolved to handle 
large volumes of data with high speed and capacity 
(Qi et al., 2022). Despite its benefits, the 
transmission of information through optical fiber 
encounters challenges in the form of dispersion and 
nonlinear effects (Biondini and Lottes, 2019; Wang 
et al., 2019). These factors limit the speed at which 
information can be transmitted. However, the 
equilibrium between dispersion and nonlinear 
effects can give rise to solitons, which are optical 
pulses that can effectively overcome these 
limitations (Song et al., 2019; Ozisik, 2022). 

In terms of its physicality, a soliton refers to a 
solitary wave that exists independently and 
possesses wave-particle duality. It is capable of 
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preserving its shape and velocity while propagating 
through the medium (Syafwan and Arifin, 2018). 
Solitons found in fiber lasers are categorized into 
two types: Bright and dark solitons. Bright solitons 
are characterized by strong peaks on a weak 
background in the anomalous group-velocity 
dispersion regime of fibers. On the other hand, dark 
solitons are the dips on a strong background in the 
normal group-velocity dispersion regime of fibers 
(Hosseini et al., 2022; Zhao et al., 2020). 

Dark soliton possesses distinct characteristics 
from the bright soliton. The formation of dark 
solitons in fiber optics is due to the nonlinearity of 
the medium. This nonlinearity leads to a 
phenomenon known as self-phase modulation 
(SPM), where the phase of the light changes due to 
its own intensity. When light with a specific 
frequency and amplitude is launched into an optical 
fiber, SPM can cause a phase shift of 180 degrees in 
the light, resulting in a dark soliton (Tang et al., 
2014; Zhao and Li, 2022). In comparison to the 
bright soliton, the dark soliton has a longer 
transmission distance, a slower pulse broadening 
speed, and is more stable and resilient to various 
perturbations such as fiber loss (Liu et al., 2019; 
Wang et al., 2021), Raman scattering (Abdel-Gawad, 
2021), and interaction of soliton (Yan and Chen, 
2022; Wang et al., 2022). The dark soliton offers a 
greater coding rate and improved self-repair 
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capability, especially for long-distance propagation. 
Soliton displays a more promising potential for 
upcoming ultra-long-distance communication 
systems. (Yang et al., 2022). 

Through theoretical research and experimental 
observations, the existence of dark solitons in fiber 
optics has been confirmed (Baronio et al., 2018; Yao 
et al., 2019). Theoretically, an equation known as the 
Discrete Nonlinear Schrödinger equation (DNLS) 
(Kevrekidis, 2009) can be used to approximate 
soliton propagation in optical fiber. The DNLS 
equation is used in many different fields, such as 
plasma physics (Kourakis and Shukla, 2005), 
molecular biology (Gninzanlong et al., 2018; Okaly 
and Nkoa, 2022), matter waves (Bose Einstein 
Condensates) (Zhang et al., 2022; Jia et al., 2022), 
electrical lattices (Motcheyo et al., 2011), array of 
waveguide (Susanto and Karjanto, 2008; Efe and 
Yuce, 2015; Motcheyo et al., 2017), and many more. 
The DNLS equation in nonlinear optics can be used 
to observe how electromagnetic waves propagate 
through a single-mode optical fiber medium. The 
fundamental DNLS that has a dark soliton is given by 
 

𝑖�̇�𝑛 + 𝐶Δ𝜓𝑛 ± 𝐹(𝜓𝑛+1, 𝜓𝑛, 𝜓𝑛−1) = 0                                    (1) 
 

where, Δ𝜓𝑛 = 𝜓𝑛+1 − 2𝜓𝑛 + 𝜓𝑛−1 denotes a 1-D 
discrete laplacian, 𝜓𝑛(𝑡) ∶  ℝ+  →  ℂ, 𝑛 ∈ ℤ, and 𝐶 are 
real-valued parameters. The 𝜓𝑛(𝑡) term represents 
the wave function in time 𝑡 on the 𝑛-th lattice and 

�̇�𝑛(𝑡) represents the derivative of the function 𝜓𝑛(𝑡) 
with respect to 𝑡. The 𝐹(𝜓𝑛+1, 𝜓𝑛 , 𝜓𝑛−1) term 
represents the nonlinearity term. The most 
commonly used nonlinear term is the cubic 
nonlinear form denoted by |𝜓𝑛|2𝜓𝑛 (Kevrekidis and 
Carretero-González, 2009). In nonlinear optics, cubic 
nonlinearity is frequently referred to as Kerr 
nonlinearity, which refers to a certain type of 
material whose nonlinear refractive index change is 
linearly dependent on light intensity (Zanga et al., 
2020). However, along with the development of 
research on soliton propagation, it was found that 
when the intensity of light passing through the 
optical fiber increases, the non-Kerr nonlinear effect 
also increases and can no longer be ignored, so that 
the soliton will be better if modeled by combining 
high-order as well as quintic nonlinearity. Therefore, 
the cubic-quintic DNLS (CQ DNLS) equation is used 
(Qausar et al., 2020).  

Although the theoretical and empirical studies 
about dark solitons are still limited, the research 
related to dark solitons in the DNLS cubic-quintic 
equation has been conducted and evolved over the 
years. Maluckov et al. (2007) discussed the solution 
for two types of dark solitons, staggered and 
unstaggered, which then analyzed its stability by 
dividing each type into two cases, namely on-site and 
intersite. The study by Motcheyo et al. (2019) 
examined the phenomenon of supratransmission, 
focusing on the formation of a train of dark solitons 
through nonlinear gap transmission. This research 
builds on their findings to further explore the 
dynamics of dark solitons, starting with the 

derivation of stationary equations. The next step 
involves calculating the forbidden band in the 
dispersion relation to identify optimal frequency and 
dispersion values for generating dark solitons. While 
earlier studies primarily focused on frequency and 
dispersion, this research also investigates the effect 
of attenuation on the propagation of dark solitons in 
optical fibers. The key contribution of this study is to 
analyze how attenuation influences energy changes 
in electromagnetic waves, as modeled by the 
dynamics of dark solitons, with the goal of managing 
energy loss in optical fibers. 

In the manufacturing process, there are often 
imperfections, such as radius fluctuations and 
variations in the lattice parameters that define the 
medium. This causes an optical fiber to be 
inhomogeneous. This non-uniformity in a real fiber's 
core medium influences several factors, including 
self-phase modulation, frequency, dispersion, and 
attenuation (Gao et al., 2021; Liu et al., 2019). 
Attenuation in nonlinear optics refers to the 
weakening of waves that happens as a result of the 
interaction between electromagnetic waves and a 
medium. As a consequence of attenuation in optical 
fibers, electromagnetic waves experience a reduction 
in energy while they travel through the fiber. This 
paper will discuss the dynamics of dark soliton and 
Hamiltonian distribution to analyze electromagnetic 
wave energy in fiber optics based on the soliton 
solution in the CQ DNLS equation by varying the 
frequency, dispersion, and attenuation. The Trust 
Region Dogleg method (Kimiaei, 2022; Zhang et al., 
2022) will be used to determine the solution to the 
CQ DNLS equation, and the solution's dynamics will 
be observed using the 4th order Runge-Kutta method 
(Kartono et al., 2020; Raza et al., 2021). This paper is 
systematically arranged as follows. The CQ DNLS 
equation and methods will be introduced in the 
second section. The results and discussion related to 
this research will be presented in the third section, 
and the dark soliton solution obtained based on the 
CQ DNLS equation, stability, soliton dynamics, and 
Hamiltonian distribution will be presented. Finally, 
in the fourth section, we present our findings and 
conclusions in brief. 

2. Materials and methods 

2.1. Discrete nonlinear Schrödinger's equation 
with cubic-quintic nonlinearity 

The DNLS equation is a difference-differential 
equation that can be used to explain wave 
propagation in a dispersive medium. In general, the 
DNLS equation can be expressed as follows: 
 

𝑖�̇�𝑛 = −𝐶(𝜓𝑛+1 − 2𝜓𝑛 + 𝜓𝑛−1) ∓ 𝐹(𝜓𝑛+1, 𝜓𝑛, 𝜓𝑛−1)      (2) 
 

where, 𝜓𝑛 ≡ 𝜓𝑛(𝑡) ∈ ℂ is a wave function in the 𝑡 ∈

ℝ+ and 𝑛 ∈ ℤ domains, �̇�𝑛 represents the derivative 
with respect to 𝑡 of the function 𝜓𝑛 , 𝐶 represents the 
dispersion parameter, 𝐹 denotes a nonlinear term, 
and 𝑖2 = −1. Nonlinear terms in the form of cubic 
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|𝜓𝑛|2𝜓𝑛 and quintic |𝜓𝑛|4𝜓𝑛 are used in this paper, 
so that Eq. 2 can be rewritten as follows: 
 

𝑖�̇�𝑛 = −𝐶(𝜓𝑛+1 − 2𝜓𝑛 + 𝜓𝑛−1) + 𝐵|𝜓𝑛|2𝜓𝑛 −

𝑄|𝜓𝑛|4𝜓𝑛 − 𝑖
𝛼

2
𝜓𝑛                                                                         (3) 

 

where, 𝐵 represents the coefficients of the cubic 
terms, 𝑄 represents the coefficients of quintic terms, 
and 𝛼 represents the attenuation parameter in 
optical fiber. Eq. 3 conserves two dynamical 
invariants: Norm (or power, in terms of optics), 
 
𝑀 = ∑ |𝜓𝑛|2𝑛                                                                                   (4) 
 

and energy (Hamiltonian), 
 

𝐻 = ∑ [𝐶𝜓𝑛
̅̅ ̅̅ (𝜓𝑛+1 − 2𝜓𝑛 + 𝜓𝑛−1) +

𝐵

2
|𝜓𝑛|4 −

𝑄

3
|𝜓𝑛|6 +𝑛

𝑖
𝛼

2
|𝜓𝑛|2] .                                                                                         (5) 

 

The stationary form of the CQ DNLS equation can 
be obtained by performing ansatz substitution 𝜓𝑛 =
𝑢𝑛𝑒−𝑖𝑤𝑡  to Eq. 3 with 𝑤 indicates the frequency 
parameter in the real domain. In addition, the 
stationary form of CQ DNLS is not affected by 
attenuation, and without loss of generality 𝐵 can be 
scaled out to 1, and 𝑄 can be scaled out to 0.5, by the 
transformation, 
 

𝜓𝑛 → √
𝐵

2𝑄
𝜓𝑛,      𝑡 →

2𝑄

𝐵2
𝑡,      𝐶 →

𝐵2

2𝑄
𝐶,                                   (6) 

 

so that the stationary CQ DNLS equation can be 
written as follows: 
 
𝑤𝑢𝑛 + 𝐶(𝑢𝑛+1 − 2𝑢𝑛 + 𝑢𝑛−1) − 𝑢𝑛

3 + 0.5𝑢𝑛
5 = 0, 

𝑢𝑛 ∈ ℝ,      𝑛 = −𝑁,−𝑁 + 1,⋯ ,𝑁,      𝑁 ∈ ℤ+                       (7) 
 

where, 𝑢±(𝑁+1) = 𝑢±𝑁 . The dark soliton obtained in 

the stationary CQ DNLS Eq. 7 is later needed as an 
initial value for simulating the soliton dynamics in 
the CQ DNLS equation with varying attenuation 
effects. In addition, the dispersion relation is also 
needed in determining the forbidden band 
(Motcheyo et al., 2019) at frequency 𝑤 to generate 
the dark soliton solution. The dispersion relation in 
Eq. 3 can be found by substituting 𝜓𝑛 = 𝑢𝑛𝑒−𝑖(𝑘𝑛−𝑤𝑡) 
where 𝑘 is the wave number into the linearized form 

of Eq. 3 and ignoring the attenuation effect. The 
linear dispersion law is obtained: 
 
𝑤 = 𝐶(−2 + 2 cos(𝑘)).                                                                (8) 
 

From this linear dispersion, the linear phonon 
band (Motcheyo and Macías-Díaz, 2023) −4𝐶 ≤ 𝑤 ≤
0𝐶 = 0 and the forbidden band 𝑤 < −4𝐶 or 𝑤 >
0. 𝐶 = 0 are known. 

2.2. Method of trust region 

To obtain the dark soliton solution for the 
stationary CQ DNLS equation, the trust region dogleg 
method is employed. This involves defining a system 
of nonlinear equations, which can be expressed 
mathematically as: 
 
𝐹(𝒖) = 0 
𝒖 = (𝑢1, 𝑢2, ⋯ , 𝑢𝑚) ∈ ℝ𝑚                                                          (9) 
 

where, 𝐹 ∶  ℝ𝑚 → ℝ𝑚 is a mapping that can be 
expressed as 𝐹(𝒖) = (𝐹1(𝒖), 𝐹2(𝒖),⋯ , 𝐹𝑚(𝒖))𝑇 and 
𝑛 ∈ {1,2,⋯ ,𝑚} satisfies 𝐹𝑛 ∶  ℝ𝑚 → ℝ𝑚 is continuous 
and differentiable. Regarding the stationary equation 
DNLS Eq. 7, define the function 𝐹𝑛 as follows: 
 
𝐹𝑛(𝒖) = 𝑤𝑢𝑛 + 𝐶(𝜓𝑛+1 − 2𝜓𝑛 + 𝜓𝑛−1) − 𝑢𝑛

3 + 0.5𝑢𝑛
5    (10) 

 

finding a solution for 𝒖∗ in Eq. 9 is the same as 
finding a solution to the unconstrained least squares 
problem 
 

𝑓(𝒖) = min
𝒖∈ℝ𝑚

1

2
‖𝐹(𝒖)‖2,                                                            (11) 

 

where, ‖  .  ‖ represents the Euclidean norm. The 
unconstrained least squares problem Eq. 11 can be 
determined using the Method of Trust Region. The 
Trust Region Method begins by developing a 
function model that can approximate 𝐹 near the 𝒖𝑘 ∈
ℝ𝑚 
 
𝑀𝑘(𝒖) = 𝐹(𝒖𝑘) + 𝐽(𝒖𝑘)(𝒖 − 𝒖𝑘)                                         (12) 
 

where, the Jacobian on 𝐹 at the point 𝒖𝑘 is denoted 
by 𝐽(𝒖𝑘). Apply Eq. 11 to find a solution to the 
function model 𝑀𝑘(𝒖) so that the problem becomes: 

  
  

mk(u) = min
u∈ℝm

1

2
‖Mk(u)‖2 = min

u∈ℝm

1

2
‖F(uk) + J(uk)(u − uk)‖

2 = min
u∈ℝm

1

2
F(uk)

TF(uk) + (u − uk)
TJ(uk)

TF(uk) +
1

2
(u −

uk)
TJ(uk)

TJ(uk)(u − uk).                            (13) 
  
 

where, the gradient on 𝐹 at the point 𝒖𝑘 denoted by 
𝐽(𝒖𝑘)

𝑇𝐹(𝒖𝑘). Defines 𝑅𝑘 as a trust region, 
 
𝑅𝑘 = {𝒖 ∈ ℝ𝑚 ∶  ‖𝒖 − 𝒖𝑘‖ ≤ ∆𝑘}.                                         (14) 
 

where, the trust region radius denoted by ∆𝑘∈ ℝ+. 
Next, look for a vector that is in the trust region 𝒖 ∈
𝑅𝑘 such that it makes 𝑚𝑘(𝒖) a minimum and 
mathematically can be written as follows: 
 

𝒗𝑘+1 = argmax
𝑢∈𝑅𝑘

𝑚𝑘(𝒖)                                                             (15) 

Eq. 15 is often called the Trust Region Sub 
problem (Wang et al., 2020). 

2.3. Cauchy point and quasi-newton point 

The Cauchy point is a point in the trust region and 
is in the direction of descent. Before defining the 
Cauchy point, note that: 
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∇𝑓(𝒖𝑘) = 𝐽(𝒖𝑘)𝑇𝐹(𝒖𝑘)                                                            (16) 

 
This results in the descent direction being along 

−𝛼𝐽(𝒖𝑘)
𝑇𝐹(𝒖𝑘) with 𝛼 > 0. In order to determine 

𝛼 > 0, the Steepest Descent direction is used on 𝑚𝑘 
in 𝒖𝑘 so that it can be written: 

 
𝛼𝑘

𝑢 = argmin
𝛼>0

𝑚𝑘 (𝒖𝑘 − 𝛼𝐽(𝒖𝑘)𝑇𝐹(𝒖𝑘)) =

𝐹(𝒖𝑘)𝑇𝐽(𝒖𝑘)𝐽(𝒖𝑘)𝑇𝐹(𝒖𝑘)

𝐹(𝒖𝑘)𝑇𝐽(𝒖𝑘)𝐽(𝒖𝑘)𝑇𝐽(𝒖𝑘)𝐽(𝒖𝑘)𝑇𝐹(𝒖𝑘)
                                                 (17) 

 
and the Cauchy Point can be defined as 𝒗𝑘

𝑐 = 𝒖𝑘 −

𝛼𝑘
𝑐𝐽(𝑢𝑘)

𝑇𝐹(𝒖𝑘) with 𝛼𝑘
𝑐 = min (

∆𝑘

‖𝐽(𝑢𝑘)𝑇𝐹(𝑢𝑘)‖
, 𝛼𝑘

𝑢). 

Quasi-Newton points are found based on the 
calculation of 𝑀𝑘(𝒖) = 0 and can be written as 𝒗𝑘

𝑞𝑛
=

𝒖𝑘 − 𝐽(𝒖𝑘)
−1𝐹(𝒖𝑘) (Brust et al., 2019). 

2.4. Dogleg method 

In order to find a solution to the Trust Region 
subproblem, as in Eq. 15, Dogleg's method is used. 
This method is related to the Quasi-Newton point 
𝒗𝑘

𝑞𝑛
 and the Cauchy point 𝒗𝑘

𝑐 . The dogleg method will 

create a path Eq. 18 that passes through these two 
points such that the model function Eq. 13 is 
minimum along the path Eq. 18.  

Finally, a candidate point 𝒗𝑘+1 is selected which 
makes the model function Eq. 13 minimum on that 
path but is still in the trust region radius. This 
method is called Dogleg because it works with two 
lines similar to a dog's leg with the knee being the 
minimal point of steepest descent direction, namely 
𝒗𝑘

𝑢 = 𝒖𝑘 − 𝛼𝑘
𝑢𝐽(𝒖𝑘)

𝑇𝐹(𝒖𝑘) and continuing to the 
Quasi-Newton point 𝒗𝑘

𝑞𝑛
 through the dogleg path 

defined as follows: 

 

𝒗(𝜏) = {
𝒖𝑘 + 𝜏(𝒗𝑘

𝑢 − 𝒖𝑘)                      for  𝜏 ∈ [0, 1],

𝒗𝑘
𝑢 + (𝜏 − 1)(𝒗𝑘

𝑞𝑛
− 𝒗𝑘

𝑢)        for 𝜏 ∈ [1, 2].
        (18) 

2.5. Runge-Kutta 4th order 

The 4th Order Runge-Kutta method can be applied 
by transforming the CQ DNLS equation into the form, 
 

𝒚𝑖+1 = 𝒚𝑖 +
1

6
(𝒌1 + 2𝒌2 + 2𝒌3 + 𝒌4)ℎ,        𝑖 = 0,1,2, … (19) 

 

by using ODE in Eq. 19, the RK4 method 
(Ahmadianfar et al., 2021) can be used, with, 
 

𝒌1 = 𝑓(𝒚𝑖),   𝒌2 = 𝑓 (𝒚𝑖 +
1

2
𝒌1ℎ),   𝒌3 = 𝑓 (𝒚𝑖 +

1

2
𝒌2ℎ),   

𝒌4 = 𝑓 (𝒚𝑖 +
1

2
𝒌3ℎ).                                                                  (20) 

3. Results and discussion 

The RK4 method was applied to analyze the 
behavior of dark solitons, which represent the 
propagation of electromagnetic waves in optical 
fibers. The stationary solution of the CQ DNLS 
equation, determined using the Trust Region Dogleg 
Method, served as the input signal. Changes in 
energy during electromagnetic wave propagation 
were examined by monitoring variations in 
Hamiltonian dynamics. The dynamics of the dark 
soliton and the Hamiltonian changes were influenced 
by parameters such as frequency, dispersion, and 
attenuation. Since the parameters in this study are 
dimensionless, the results presented are unitless. 

3.1. Stationary solutions of cubic-quintic discrete 
nonlinear Schrödinger's equation 

In the process of finding the dark soliton solution, 
it is necessary to form a model function by 
considering the dimensions of the problem Eq. (7). 
This causes 𝐹(𝒖) = (𝐹−𝑁(𝒖), 𝐹−𝑁+1(𝒖),⋯ , 𝐹𝑁(𝒖))𝑇 
with 𝒖 = (𝑢−𝑁 , 𝑢−𝑁+1, ⋯ , 𝑢𝑁) ∈ ℝ2𝑁+1 and also 
makes Eq. 9 and Eq. 10 become a nonlinear system 
with 2𝑁 + 1 equations, which can be expressed as 
follows: 

  
  

𝐹(𝒖) =

[
 
 
 
 
 
 
 
 
 

𝐹−𝑁(𝒖)

𝐹−𝑁+1(𝒖)
⋮

𝐹−1(𝒖)

𝐹0(𝒖)

𝐹1(𝒖)
⋮

𝐹𝑁−1(𝒖)

𝐹𝑁(𝒖) ]
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 

𝑤𝑢−𝑁 + 𝐶(𝑢−𝑁+1 − 2𝑢−𝑁 + 𝑢−𝑁−1) − 𝑢−𝑁
3 + 0.5𝑢−𝑁

5

𝑤𝑢−𝑁+1 + 𝐶(𝑢−𝑁+2 − 2𝑢−𝑁+1 + 𝑢−𝑁) − 𝑢−𝑁+1
3 + 0.5𝑢−𝑁+1

5

⋮
𝑤𝑢−1 + 𝐶(𝑢0 − 2𝑢−1 + 𝑢−2) − 𝑢−1

3 + 0.5𝑢−1
5

𝑤𝑢0 + 𝐶(𝑢1 − 2𝑢0 + 𝑢−1) − 𝑢0
3 + 0.5𝑢0

5

𝑤𝑢1 + 𝐶(𝑢2 − 2𝑢1 + 𝑢0) − 𝑢1
3 + 0.5𝑢1

5

⋮
𝑤𝑢𝑁−1 + 𝐶(𝑢𝑁 − 2𝑢𝑁−1 + 𝑢𝑁−2) − 𝑢𝑁−1

3 + 0.5𝑢𝑁−1
5

𝑤𝑢𝑁 + 𝐶(𝑢𝑁+1 − 2𝑢𝑁 + 𝑢𝑁−1) − 𝑢𝑁
3 + 0.5𝑢𝑁

5 ]
 
 
 
 
 
 
 
 
 

= 𝟎                                                                  (21) 

 

and construct the Jacobian matrix at 𝒖𝑘 as follows: 
 

𝐽(𝒖𝑘) =

[
 
 
 
 
 
 
 
 

𝜕𝐹−𝑁(𝒖𝑘)

𝜕𝑢−𝑁

𝜕𝐹−𝑁+1(𝒖𝑘)

𝜕𝑢−𝑁

⋮
𝜕𝐹𝑁(𝒖𝑘)

𝜕𝑢−𝑁

𝜕𝐹−𝑁(𝒖𝑘)

𝜕𝑢−𝑁+1

𝜕𝐹−𝑁+1(𝒖𝑘)

𝜕𝑢−𝑁+1

𝜕𝐹𝑁(𝒖𝑘)

𝜕𝑢−𝑁+1

⋯

⋯

⋱

⋯

𝜕𝐹−𝑁(𝒖𝑘)

𝜕𝑢𝑁

𝜕𝐹−𝑁+1(𝒖𝑘)

𝜕𝑢𝑁

⋮
𝜕𝐹𝑁(𝒖𝑘)

𝜕𝑢𝑁

]
 
 
 
 
 
 
 
 

                                                                                                                                               (22) 
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moreover, for all 𝑖, 𝑗 ∈ [−𝑁,𝑁] applies, 
 

𝜕𝐹𝑖(𝒖𝑘)

𝜕𝑢𝑗
= { 

𝑤 − 2𝐶 − 3𝑢𝑖
2 + 2.5𝑢𝑖

4|
𝑢=𝑢𝑘

if 𝑗 = 1,

𝐶 if 𝑗 = 𝑖 − 1 or 𝑗 = 𝑖 + 1,     

0        others.

                                                                                                       (23) 

  
 

So that the function models Eq. 12 and Eq. 13 can 
be formed based on Eq. 21-22. The starting point to 
build the solution is to solve the anti-continuum limit 
case, causing the value of 𝐶 to be zero. In the case of 
CQ DNLS, replacing 𝐶 = 0, Eq. 24 becomes, 
 

𝐹(𝒖) =

[
 
 
 
 

𝐹−𝑁(𝑢)

𝐹−𝑁+1(𝑢)
⋮

𝐹𝑁−1(𝑢)

𝐹𝑁(𝑢) ]
 
 
 
 

=

[
 
 
 
 
 

𝑤𝑢−𝑁 − 𝑢−𝑁
3 + 0.5𝑢−𝑁

5

𝑤𝑢−𝑁+1 − 𝑢−𝑁+1
3 + 0.5𝑢−𝑁+1

5

⋮
𝑤𝑢𝑁−1 − 𝑢𝑁−1

3 + 0.5𝑢𝑁−1
5

𝑤𝑢𝑁 − 𝑢𝑁
3 + 0.5𝑢𝑁

5 ]
 
 
 
 
 

= 𝟎  

                                                                                                         (24) 
 

Solving the system of Eq. 24 can be done by 
finding solutions for each 𝐹𝑛. This is because any two 
𝐹𝑛 have no variables related to each other. Rewrite as 
follows: 
 
𝑤𝑢𝑛 − 𝑢𝑛

3 + 0.5𝑢𝑛
5 = 0                                                              (25) 

 

and the solutions that satisfy Eq. 25 are 𝑢𝑛 = 0 and 

𝑢𝑛 = ±√1 ± √1 − 2𝑤. Note that the value of 𝑢𝑛 ∈ ℝ, 
therefore the value of 𝑤 is satisfied only in the 
interval 𝑤 ≤ 0.5. Based on the results obtained, two 
fixed points can be constructed, 
 

𝑢𝑛 = {

𝑢𝑖 = −√1 + √1 − 2𝑤,    𝑖 = −𝑁,−𝑁 + 1,⋯ ,−1

𝑢0 = 0,

𝑢𝑗 = √1 + √1 − 2𝑤,    𝑗 = 1, 2,⋯ ,𝑁.

    

                                                                                                         (26) 

𝑢𝑛 = {

𝑢𝑖 = −√1 − √1 − 2𝑤,    𝑖 = −𝑁,−𝑁 + 1,⋯ ,−1

𝑢0 = 0,

𝑢𝑗 = √1 − √1 − 2𝑤,    𝑗 = 1, 2,⋯ ,𝑁.

      

                                                                                                         (27) 
 

In the case of the coupling constant between two 
adjacent lattices is not neglected, or in other words, 
if the value of 𝐶 is not equal to zero, then an exact 
solution cannot be found. Therefore, the Trust 
Region Dogleg method is used to determine a 
solution. To perform the simulation, an initial value 
that matches the characteristics of the solution you 
want to find is needed. In this case, the initial value 
of tanh(𝑛) is used because the dark soliton solutions 
have a shape that resembles the hyperbolic function. 
Simulations are carried out with 𝑛 = −𝑁,−𝑁 +
1,⋯ ,𝑁 with 𝑁 ∈ ℤ+ and divided into four categories 
as follows: 
 
1. 𝐶 > 0 and 𝑤 ≤ 0     3. 𝐶 < 0 and 𝑤 ≤ 0 
2. 𝐶 > 0 and 𝑤 ≥ 0     4. 𝐶 < 0 and 𝑤 ≥ 0                           (28) 
 

Based on the simulations carried out in categories 
1 and 3, the solution obtained did not form a soliton 
solution as expected. Only in category 2 and 4 dark 

soliton solutions were found. Specifically, in the 
following intervals: 
 
𝐶 ∈ [−0.05, 0)  ∪ (0, 0.94] and 𝑤 ∈ [0.01, 0.89].              (29) 
 

Although the dark soliton in Eq. 7 is formed using 
the parameter value Eq. 29, it should be noted that 
the shape of the soliton obtained is different. This 
depends on the magnitude of the values of 𝑤 and 𝐶 
given. Therefore, to see the effect of parameters 𝑤 
and 𝐶, a plot of the dark soliton was carried out by 
setting a fixed parameter value and allowing the 
other parameters to change with constant 
differences. Fig. 1 represents a profile solution for 
dark soliton by setting the parameter 𝑤 = 0.36 and 
some 𝐶 values using the Trust Region Dogleg 
method. From Figs. 1a-1d, it can be seen that 
initially, the resulting solution did not form a dark 
soliton and also note that the 𝐶 parameter used does 
not meet the condition Eq. 29. It can be seen in more 
detail for Figs. 1a-1d, sites on the right {𝑢𝑛|𝑛 =
1,2,⋯ ,𝑁} and left {𝑢𝑛|𝑛 = −𝑁,−𝑁 + 1,⋯ ,−1} still 
fluctuates like a sinusoidal wave with a large enough 
amplitude, which is about one-third of the difference 
between the highest 𝑢𝑛 sites and the lowest 𝑢𝑛 sites. 
Then slowly the amplitude of the wave decreases but 
the quantity becomes more numerous than before 
until finally, the wave-like fluctuation behavior on 
the left and right sites disappears and a dark soliton 
is formed, as shown in Figs. 1e-1f. If it is reviewed in 
more detail regarding Figs. 1e-1f, the effect of 
increasing the value of 𝐶, results in a decrease in 
position at sites 𝑢1 and an increase in position at 
sites 𝑢−1. In addition, the increase in the value of 𝐶 
did not affect the soliton height in dark soliton. 

Fig. 2 represents a profile solution for dark 
soliton by setting parameter 𝐶 = 0.2 and some 𝑤 
values using the Trust Region Dogleg method. 
According to Figs. 2a-2f, decreasing the value of the 
parameter 𝑤 in the dark soliton solution resulted in 
a gradual increase in height at the right 𝑢𝑛 sites and 
a gradual decrease in height at the left 𝑢𝑛sites up to 
1 and −1, respectively. 

3.2. Dark soliton stability 

Once the dark soliton solution determined based 
on the stationary CQ DNLS equation is obtained, its 
stability will be examined using the linearization 
ansatz 𝑢𝑛(𝑡) = 𝑢𝑛 + 𝛿𝜖𝑛(𝑡), 𝛿 ≪ 1. By writing 𝜖𝑛 =
(𝜂𝑛 + 𝑖𝜉𝑛)𝑒𝜆𝑡 , the eigenvalue problem is obtained as 
follows: 
 

(
0 −𝐶∆ − 𝑢𝑛

2 + 0.5𝑢𝑛
4

𝐶∆ + 3𝑢𝑛
2 − 2.5𝑢𝑛

4 0
) (

𝜂𝑛

𝜉𝑛
) = 𝜆 (

𝜂𝑛

𝜉𝑛
). 

                                                                                                         (30)  
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Solving the eigenvalue problem Eq. 30 to get 
𝑅𝑒(𝜆) and 𝐼𝑚(𝜆) so that the stability spectrum can 
be described. 

Fig. 3 shows the spectrum of the eigenvalues for 
dark soliton with parameter 𝑤 = 0.36 fixed and 
some 𝐶 values. In general, the eigenvalues obtained 
are spread on the negative and positive sides of real 
numbers. The increasing value of 𝐶 causes the 
eigenvalues to shift from the negative to the positive 
side, but almost all of them still have eigenvalues on 
the positive side of the real numbers, indicating that 
the dark soliton is unstable. The opposite is shown in 

Fig. 3f, where all of the eigenvalues are on the 
negative side of the real numbers, indicating that the 
resulting dark solution is stable. 

Fig. 4 represents the spectrum of the eigenvalues 
for dark soliton with parameter 𝐶 = 0.2 fixed and 
some 𝑤 values. In general, the resulting eigenvalues 
are all on the positive side, except in Figs. 4c-4f, 
there is one eigenvalue that is on the negative side of 
the real part. Because there is no single spectrum 
where all eigenvalues are on the negative side of real 
numbers, the resulting dark soliton is unstable. 

 
 

   
a b c 

 

 

 
d e f 

Fig. 1: Profiles solutions for dark soliton with parameter w = 0.36 fixed and some values C (a) C = −0.41 (b) C = −0.32 
(c) C = −0.23 (d) C = −0.14 (e) C = −0.05 (f) C = 0.04. The n-th site is represented by the square marker indicated by arrow 

A, and the line connecting two adjacent sites is represented by arrow B 
 
 

   
a b c 

   
d e f 

Fig. 2: Profiles solutions for dark soliton with fixed parameter C = 0.2 and some w values (a) w = 0.05 (b) w = 0.14 
(c) w = 0.23 (d) w = 0.32 (e) w = 0.41(f) w = 0.5. The n-th site is represented by the square marker indicated by arrow A, 

and the line connecting two adjacent sites is represented by arrow B 
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a b c 

   
d e f 

Fig. 3: The spectrum of the eigenvalues for dark soliton with parameter w = 0. 36 fixed and some values C 
(a) C = −0. 41 (b) C = −0. 32 (c) C = −0. 23 (d) C = −0. 14 (e) C = −0. 05 (f) C = 0. 04 

 
 

   
a b c 

   
d e f 

Fig. 4: The spectrum of the eigenvalues for dark soliton with parameter C = 0. 2 fixed and some values w 
(a) w = 0. 05 (b) w = 0. 14 (c) w = 0. 23 (d) w = 0. 32 (e) w = 0. 41 (f) w = 0. 5 

 

Fig. 5a shows the dark soliton's stability region on 
the (𝐶, 𝑤) plane simulated along the interval (29). 
The color of each point in Fig. 5 represents the 
maximum value of the real part of the eigenvalue in 
each parameter 𝐶 and 𝑤. It can be seen that the 
larger the maximum eigenvalue is, the brighter the 
color, while the smaller the maximum eigenvalue is, 
the darker the color. A stable dark soliton is 
characterized by a negative maximum eigenvalue, 
which means that the image is marked with black 
pixels. Then, switching to Fig. 5b, it can be seen that 
there are white dots in the area marked with a dark 
color and then move along the 𝐶 axis. These are the 

points that are expected to be used as parameter 
representations in the case of fixed 𝑤 and different 𝐶 
in simulating the differences in the dark soliton 
dynamics' characteristics. Similarly, in Fig. 5c, it can 
be seen that there are white dots in the area marked 
with dark color and then move along the 𝑤 axis. 
These points will be used to represent the 
parameters in the case of 𝐶 fixed and different 𝑤 
when simulating the various characteristics of the 
dark soliton dynamics. It is important to note that six 
points are selected for each case: three from the 
stable region and three from the unstable region. 
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a b c 

Fig. 5: The dark soliton's stability region on the (𝐶, 𝑤) plane 
 

3.3. Dark soliton dynamics of cubic-quintic 
discrete nonlinear Schrödinger’s equation 

The RK4 method is used to simulate dark soliton 
dynamics in the CQ DNLS equation by varying the 
frequency (𝑤), dispersion (𝐶), and attenuation (𝛼) 
parameters in order to investigate the properties of 
electromagnetic waves when they interact with 
optical fiber. 

Fig. 6 illustrates the dynamics of dark soliton in 
the CQ DNLS equation with 𝑤 = 0.36 fixed and 
several 𝐶 parameters. Based on the simulation 

results shown in Fig. 6 (top), the electromagnetic 
wave propagating along the fiber optics can maintain 
its shape when the parameters used are in the stable 
region. Conversely, Fig. 6 (bottom) shows that if the 
parameters used are in the unstable region, the 
electromagnetic wave experiences a shift so that it 
can no longer maintain its shape when propagating 
along the fiber optics. Furthermore, the 𝐶 parameter 
influences electromagnetic wave propagation on 
fiber optics. A relatively large value of 𝐶 causes the 
electromagnetic wave pulse to widen. 

 

   

   
a b c 

Fig. 6: Dark soliton dynamics in the CQ DNLS equation with w = 0. 36 fixed and several parameters C 
(top) (a) C = 0. 04, (b) C = 0. 05, (c) C = 0. 06 (bottom) (a) C = 0. 16, (b) C = 0. 26, (c) C = 0. 36 

 

Fig. 7 illustrates the dynamics of dark soliton in 
the CQ DNLS equation with 𝐶 = 0.04 fixed and 
several parameters 𝑤. According to the results 
shown in Fig. 7, it can be seen that the value of 𝑤 has 
a significant impact on the condition of 
electromagnetic waves propagating on the fiber 
optic. The amplitude of the electromagnetic wave 
increases as 𝑤 increases. The electromagnetic wave 
can also maintain its shape while propagating in the 
fiber optics, as shown in Fig. 7 (top). This is because 
the parameters used are in a stable region of the 
(𝐶, 𝑤) plane. In contrast, if the parameters are 
chosen in the unstable region in the (𝐶, 𝑤) plane, it 
can be seen in Fig. 7 (bottom) that the 
electromagnetic wave cannot maintain its shape on 

the optical fiber, as indicated by a shift when 
propagating. 

Fig. 8 represents the dark soliton dynamics in the 
CQ DNLS equation with 𝑤 = 0.36 fixed and several 
parameters 𝐶 in the stable region and varies 𝛼. 
Based on the results obtained in Fig. 8, it is clear that 
the parameters 𝐶 and 𝛼 have an influence on the 
propagation of electromagnetic waves on fiber 
optics. The larger the parameters of 𝐶, the faster the 
pulse of electromagnetic waves propagating in the 
fiber optics will widen. It can be seen in the Fig. 8 
that for 𝐶 = 0.04 the pulse widening of the 
electromagnetic wave starts at 𝑡 ≈ 350, then for 𝐶 =
0.05 the pulse widening starts at 𝑡 ≈ 250 and for 𝐶 =
0.06 the pulse widening starts at 𝑡 ≈ 150. 
Meanwhile, the 𝛼 parameter greatly affects the 



Qausar et al/International Journal of Advanced and Applied Sciences, 11(11) 2024, Pages: 142-155 

150 
 

intensity of the electromagnetic wave, which affects 
the amplitude height of the electromagnetic wave. 

The larger the parameters of α, the faster the 
intensity of the electromagnetic wave decreases. 

 

   

   
a b c 

Fig. 7: Dark soliton dynamics in the CQ DNLS equation with C = 0. 04 fixed and several parameters w 
(top) (a) w = 0. 23, (b) w = 0. 3, (c) w = 0. 37 (bottom) (a) w = 0. 44, (b) w = 0. 51, (c) w = 0. 58 

 

   

   

   

   
a b c 

Fig. 8: Dark soliton dynamics in the CQ DNLS equation with w = 0. 36 fixed and α = 0 (top), α = 0. 01 (row 2), α = 0. 05 (row 
3) and α = 0. 1 (bottom) for several parameters C (a) C = 0. 04, (b) C = 0. 05, (c) C = 0. 06 
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Fig. 9 represents the dark soliton dynamics in the 
CQ DNLS equation with 𝐶 = 0.04 fixed and several 
parameters 𝑤 in the stable region and varies 𝛼. 
Based on Fig. 9, it can be seen that the parameters 𝑤 
and 𝛼 have a significant influence on the propagation 
of electromagnetic waves on the fiber optics. The 
larger the parameter of 𝑤, the greater the amplitude 

of electromagnetic waves propagating through the 
fiber optics. Meanwhile, the 𝛼 parameter influences 
the intensity of electromagnetic waves propagating 
through the fiber optics. The greater the value of 𝛼, 
the faster the intensity of electromagnetic waves will 
decrease. As a result, electromagnetic waves can no 
longer propagate in the optical fiber. 

 

   

   

   

   
a b c 

Fig. 9: Dark soliton dynamics in the CQ DNLS equation with C = 0. 04 fixed and α = 0 (top), α = 0. 01 (row 2), α = 0. 05 (row 
3) and α = 0. 1 (bottom) for several parameters w (a) w = 0. 23, (b) w = 0. 3, (c) w = 0. 37 

 

3.4. Hamiltonian dynamics of cubic-quintic 
discrete nonlinear Schrödinger's equation 

The energy contained in electromagnetic waves 
propagating in fiber optics can be analyzed by using 
Hamiltonian dynamics in the CQ DNLS equation. 
Changes in Hamiltonian dynamics are influenced by 
several parameters, such as frequency (𝑤), 
dispersion (𝐶), and attenuation (𝛼). 

Fig. 10 represents the Hamiltonian dynamics of 
the CQ DNLS equation by varying the parameters 𝛼, 
𝑤 and 𝐶. Hamiltonian dynamics in Fig. 10 (top) is 
obtained based on dark soliton dynamics in Fig. 8, 
and Hamiltonian dynamics in Fig. 10 (bottom) is 
obtained based on dark soliton dynamics in Fig. 9. 
The energy of electromagnetic waves propagating on 
fiber optics is described by Hamiltonian dynamics, as 
shown in Fig. 10. 
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a b c 

Fig. 10: Hamiltonian dynamics for the CQ DNLS equation for α = 0, α = 0 .01, α = 0. 05 and α = 0. 1 with 
(top) parameter w = 0. 36 fixed with (a) C = 0. 04, (b) C = 0. 05, (c) C = 0. 06 and (bottom) parameter C = 0. 04 fixed with 

(a) w = 0. 23, (b) w = 0. 3, (c) w = 0. 37 
 

It is clear that the parameter α has a significant 
influence on the energy of the electromagnetic wave 
propagating in the optical fiber. If the parameter α is 
zero, for a fixed value of 𝐶 and 𝑤, it can be seen that 
the Hamiltonian value is always constant without 
loss (marked in blue line). The greater the 
attenuation effect (α) given, the decrease in energy 
will be faster. As seen in Fig. 10, in general, the 
provision of a high attenuation effect (marked in a 
light blue line) makes electromagnetic waves that 
propagate on optical fiber experience energy loss 
faster than others. This is in line with research 
conducted by Mardi et al. (2023) related to the effect 
of attenuation on the Hamiltonian Dynamics of 
Nonlinear Schrodinger equations (Continuos Model). 
The larger the dispersion effect (𝐶), the wider the 
pulse of the electromagnetic wave propagating on 
the fiber optics, resulting in an increase in energy in 
the wave of electromagnetic. As seen in Fig. 10, the 
Hamiltonian dynamics with a larger value of 𝐶 has a 
greater energy than the others. Meanwhile, the 
parameter 𝑤 influences the amplitude of the 
electromagnetic wave; the greater the frequency 
value (𝑤) given, the greater the amplitude of the 
electromagnetic wave propagating in the fiber 
optics, resulting in an increase in energy in the 
electromagnetic wave propagating along the fiber 
optics. The Hamiltonian dynamics with a larger value 
of 𝑤 has a greater energy than the others, as seen in 
Fig. 10. 

The findings highlight the importance of 
understanding and evaluating the effects of 
dispersion, frequency, and attenuation in materials 
used for optical fiber cores to optimize 
electromagnetic wave propagation. To enhance the 
performance of optical fibers, engineers and 
researchers must carefully assess the properties of 

core materials. For example, minimizing impurities 
in the glass can reduce attenuation, while choosing 
materials with appropriate refractive indices can 
mitigate dispersion. Similarly, materials with low 
absorption coefficients can decrease signal loss due 
to attenuation, and those with high-frequency 
response can support faster signal propagation. 
Further research and development in fiber optics are 
essential to improve the properties of these 
materials, enhancing their efficiency and 
performance in applications such as 
telecommunications, medical devices, and sensing 
technologies. Achieving optimal electromagnetic 
wave propagation requires a comprehensive review 
of the dispersion, frequency, and attenuation 
characteristics of the primary material used in 
optical fiber cores. 

4. Conclusion 

The dark soliton dynamics and Hamiltonian of the 
CQ DNLS equation have been analyzed. First, the 
stationary solution of the CQ DNLS equation is 
sought, which is required as an input signal to 
simulate the dark soliton dynamics. The starting 
point to build the solution is to solve the anti-
continuum limit case (𝐶 = 0). In the case that 𝐶 is 
not zero, the stationary solution is sought using the 
Method of Trust Region Dogleg by taking the starting 
point tanh(𝑛) and simulating the values of 𝑤 and 𝐶, 
resulting in a dark soliton found in the intervals ∈
[−0.05,0)  ∪ (0,0.94] and 𝑤 ∈ [0.01,0.89]. The shape 
of the dark soliton is affected by changes in the 
values of the parameters 𝑤 and 𝐶 chosen based on 
these intervals. The smaller parameter of 𝑤 selected 
respectively causes an increase in the right sites and 
a decrease in the left sites, which increases the 
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height of the dark soliton. In contrast to the 
parameter 𝑤, the increase in the value of parameter 
𝐶 did not cause a change in the height of the dark 
soliton, only slight changes in position, namely the 
decrease of sites 𝑢1 and increase of sites 𝑢−1. Then, a 
stability test is carried out on the dark soliton 
obtained so that the stability region is obtained for 
the 𝑤, 𝐶 fields. Three points in the stable region and 
three points in the unstable region are taken to 
simulate the dynamics of the dark soliton. 

Dark soliton dynamics describes the propagation 
of electromagnetic waves propagating in fiber optics. 
The dark soliton dynamics are studied using the RK4 
Method by taking the stationary solution as the input 
signal. Based on the results obtained, if the 
parameters 𝑤, 𝐶 are taken in the unstable region, the 
electromagnetic wave will experience a shift in its 
propagation, which ultimately cannot maintain its 
shape along the optical fiber. Conversely, if the 
parameter 𝑤, 𝐶 is taken in the stable region, the 
electromagnetic wave can maintain its shape along 
the optical fiber. Then by taking the parameters 𝑤, 𝐶 
in the stable region, the dark soliton dynamics are 
simulated by varying the parameter 𝛼. Parameters 
frequency (𝑤), dispersion (𝐶), and attenuation (𝛼) 
have a significant influence on the propagation of 
electromagnetic waves on fiber optics. The larger the 
parameter of 𝑤, the higher the amplitude of 
electromagnetic waves propagating on the fiber 
optics. The impact of 𝐶 value on the dynamics of 
dark soliton is that as 𝐶 increases, the 
electromagnetic wave pulse that propagates on the 
fiber optics widens faster. Finally, the attenuation 
effect affects electromagnetic wave propagation. The 
greater the α parameter chosen, the faster the 
intensity of electromagnetic waves will decrease. 
These three parameters also have an influence on 
simulating the dynamics of the Hamiltonian. The 
Hamiltonian in the CQ DNLS equation examines 
electromagnetic wave energy propagating through 
fiber optics. It is found that increasing the values of 
𝑤 and 𝐶, each of which affects the increase in 
amplitude height and widening of the 
electromagnetic wave, will affect the increase in 
electromagnetic wave energy when propagating on 
the optical fiber. Meanwhile, an increase in the value 
of 𝛼, which affects the decrease in electromagnetic 
wave intensity, causes electromagnetic waves to lose 
energy as they propagate through the fiber optics. 

In summary, achieving maximum electromagnetic 
wave propagation in optical fibers requires a 
thorough understanding and evaluation of the effects 
of dispersion, frequency, and attenuation of 
materials used to make the cores. Engineers and 
researchers need to carefully evaluate the properties 
of the materials used and refine them to optimize the 
performance and efficiency of optical fibers in 
various applications. Further research and 
development in this field can lead to improvements 
in telecommunications, medical equipment, and 
sensing technologies. As a result, the primary 
material used to make optical fiber cores must be 
reconsidered. To ensure its attenuation, dispersion, 

and frequency properties are optimized for optimal 
electromagnetic wave propagation. 

List of symbols 

argmax Arguments of the maxima 
B Cubic terms 

C 
Coupling parameter between two adjacent 
lattices 

ℂ The set of complex numbers 
e Euler's Number, e = 2,71828… 
f Objective function 
F System of nonlinear equations 
Fn The n-th nonlinear equations 
H Hamiltonian 
i Imaginary number, i = √−1 
J Jacobian matrix 
k wave number 
Mk Model function at the k-th iteration 

mk 
Solution to the model function at the k-th 
iteration 

n Index 
Q Quintic terms 
Rk Trust region at the k-th iteration 
ℝ The set of real numbers 
ℝ+ The set of positive real numbers 
ℝm The set of m-dimentional real numbers 
t Time variable 
u Candidate of soliton solution 

u∗ 
Solution to the unconstrained least squares 
problem 

uk 
Candidate of soliton solution at the k-th 
iteration 

un Elements of a soliton solution candidate 

vk+1 
Potential candidate of soliton solution at the 
(k + 1)-th iteration 

vk
c Cauchy point 

vk
qn

 Quasi-Newton point 

v Dogleg path 
w Propagation parameter 
ℤ The set of integer numbers 
ℤ+ The set of positive integer numbers 

Greek symbols 
α Alpha 

αk
c  

Steepest descent direction inside trust region 
radius at the k-th iteration 

αk
u Steepest descent direction at the k-th iteration 

δ Delta 
τ Scale that generates part of the dogleg paths 
ψn Wave function 

ψ̇n 
Derivative with respect to time of the wave 
function 

∆k Trust region radius at the k-th iteration 
∇ Vector differential operator 
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