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This study examined the reliability and validity of the Unified Theory of 
Acceptance and Use of Technology (UTAUT) measurement instrument. The 
sample included 202 mathematics teachers randomly selected from national 
secondary schools in Malaysia. The dataset was analyzed using the MIRT 
(Multidimensional Item Response Theory) and LTM (Latent Trait Models) 
packages in R software. The psychometric properties of the UTAUT scale 
were assessed using the graded response model (GRM), a type of Item 
Response Theory (IRT) model. The findings indicate that the scale effectively 
differentiates between various levels of technological acceptance, with most 
items showing high discrimination values. The threshold parameters suggest 
that higher response categories correspond to greater levels of agreement. 
The scale provides the highest accuracy in the middle range of traits but is 
less precise at the lower and upper extremes. However, the UTAUT scale still 
demonstrates good model fit and reliability. 
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1. Introduction 

*Since its introduction in 2003, the Unified Theory 
of Acceptance and Use of Technology (UTAUT) by 
Venkatesh et al. (2012) has profoundly influenced 
technology acceptance research. Its ongoing 
relevance is demonstrated by its widespread 
application across diverse technological domains, 
from blockchain, e-government initiatives (Chen and 
Aklikokou, 2020; Li, 2021) and health-related 
technologies (Rouidi et al., 2022; Wang et al., 2020) 
to educational platforms such as mobile learning 
(Izkair and Lakulu, 2021; 2023) and e-learning 
system (Salloum and Shaalan, 2019) as well as 
digital learning tools (Abbad, 2021; Ustun et al., 
2023; Wong et al., 2013; Yeop et al., 2019). 
Moreover, numerous studies utilizing UTAUT have 
exhibited enhanced predictive power for both 
behavioral intention and actual technology use in 
various settings. For instance, studies have 
demonstrated some ability to forecast technology 
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adoption patterns among librarians in North 
America (Andrews et al., 2021), as well as robust 
predictive capabilities concerning healthcare 
workers' implementation of mobile electronic health 
record platforms (Kim et al., 2016). 

With all that said, despite the model’s widespread 
application, its psychometric evaluation over the 
years has largely relied on Classical Test Theory 
(CTT) approaches, such as Cronbach's alpha (Sezer 
and Yilmaz, 2019; Ustun et al., 2023), test-retest 
reliability (Sezer and Yilmaz, 2019; Ustun et al., 
2023), and use of composite reliability in Partial 
Least Squares Structural Equation Modelling (PLS-
SEM) as seen in the works by Ahmed et al. (2021) 
and Venkatesh et al. (2012). As the model's 
application expands to diverse cultural and linguistic 
contexts, an alternative psychometric approach 
becomes necessary. In this regard, Item Response 
Theory (IRT), specifically Samejima’s (1969) Graded 
Response Model (GRM) (Samejima, 1969), emerges 
as a valuable alternative. Originally designed for 
analyzing ordered polytomous categories like Likert 
scales, GRM offers more detailed insights into item 
discrimination and difficulty parameters 
(Hambleton, 2021). 

The widespread adoption of UTAUT across 
various technological domains has highlighted the 
need for a more robust evaluation of its 
measurement scale. Current psychometric 
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assessments of UTAUT rely heavily on CTT 
approaches, which have known limitations, including 
sample dependency and the assumption of equal 
contribution of all items to the total score 
(Hambleton and Jones, 1993). As a result, these 
limitations may hinder CTT's ability to deliver the 
precise measurements needed for discerning 
nuanced differences in technology acceptance among 
diverse user groups or settings, which could 
potentially compromise the model's predictive and 
practical capabilities. To address these issues, this 
study seeks to fill this crucial gap by applying 
Samejima’s (1969) GRM, an IRT approach, to 
evaluate the psychometric properties of the UTAUT 
scale. The application of IRT to UTAUT represents a 
significant methodological advancement, offering 
potential insights into item-level characteristics and 
measurement precision across the latent trait 
continuum - aspects that traditional CTT approaches 
fail to adequately capture. Research questions are as 
follows: 

 
Q1: What is the overall fit of the UTAUT scale to the 
GRM, and how do the model parameters (e.g., item 
difficulty, discrimination) reflect the psychometric 
properties of the scale? 
Q2: Does the UTAUT scale provide reliable 
measurement across the full range of the latent traits 
(theta), as evidenced by the test information 
function in the GRM? 

2. Literature review 

2.1. Brief introduction to UTAUT 

Overall, the UTAUT emerged as a response to the 
fragmented landscape of technology acceptance 
models through a groundbreaking effort by 
Venkatesh et al. (2003). At its very core, Venkatesh’s 
et al. (2003) UTAUT model proposed four 
fundamental constructs, namely Effort Expectancy, 
Performance Expectancy, Social Influence, and 
Facilitating Conditions. 

As for its application, the enduring relevance of 
UTAUT is apparent. Various studies from all different 
kinds of sectors have successfully applied the model 
to study technology acceptance. In e-government, 
Chen and Aklikokou (2020) comprehensively 
studied in the Togolese context of 482 respondents, 
revealed that behavioral intention toward e-
government services is primarily driven by 
perceived usefulness and ease of use, with these 
factors mediating between social influence, 
trustworthiness, and facilitating conditions.  

Similarly, in the healthcare domain, UTAUT has 
guided digital health innovation implementation, 
with studies revealing practical insights for 
optimizing electronic health records and 
telemedicine platforms (Rouidi et al., 2022; Wang et 
al., 2020). Notably, Byrd et al.'s (2021) analysis of 
1,254 healthcare providers demonstrated that 
perceived peer usage and social context explained 
61-72% of implementation success, leading 

institutions to prioritize expanded access policies 
and early adopter visibility in their technology 
deployment strategies. 

In higher education, UTAUT applications have 
yielded actionable insights for educational 
technology deployment. Xue's et al. (2024) 
systematic review of 159 studies revealed that 
performance expectancy (74%) and effort 
expectancy (50%) were the strongest drivers of 
technology adoption, shaping implementation 
strategies for faculty training and e-learning support 
services. These behavioral factors proved 
particularly crucial for VR adoption in STEM 
education, m-learning acceptance, and e-learning in 
education. Additionally, these insights have also 
become essential post-COVID-19 as universities 
enhance their digital learning ecosystems by 
prioritizing performance benefits and user support. 

However, despite its widespread application, 
UTAUT has not been without criticism. Contended 
that UTAUT, in its attempt to be comprehensive, 
became unwieldy and lost parsimony mainly 
because it incorporated numerous variables and 
moderating factors, potentially obscuring the core 
determinants of technology acceptance and 
complicating the practical application and 
interpretation of the model (Marangunić and Granić, 
2015; Tamilmani et al., 2021). 

2.2. Methodological approaches in assessing 
reliability of UTAUT’s constructs 

2.2.1. Classical test theory approaches 

For nearly two decades, UTAUT's psychometric 
properties have primarily been assessed using 
traditional reliability methods, particularly 
Cronbach's alpha within CTT. This trend, initiated by 
Venkatesh et al. (2003) who reported high internal 
consistency (Cronbach's alpha > 0.70) for UTAUT 
constructs, continues to influence recent research. 
For instance, a meta-analysis by Dwivedi et al. 
(2011), examining 18 studies, confirmed 
consistently high Cronbach's alpha values across 
UTAUT constructs. The average reliability 
coefficients were found to be Performance 
Expectancy (0.798), Effort Expectancy (0.870), Social 
Influence (0.811), Facilitating Conditions (0.747), 
Behavioral Intention (0.895), and Use Behavior 
(0.870). 

While these findings appear robust, the 
persistent use of Cronbach's alpha in UTAUT 
research raises concerns about potential reliability 
inflation and the need for more sophisticated 
psychometric approaches. Cronbach's alpha has 
well-documented limitations when applied to 
complex, multidimensional constructs (McNeish, 
2018; Sijtsma, 2009), particularly for the 
multifaceted constructs common in technology 
acceptance models. These limitations include: 

 

1. Assumption of essential tau-equivalence: 
Cronbach's alpha relies on the premise that all 
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items in a scale are essentially tau-equivalent, 
meaning they contribute similarly (though not 
necessarily identically) to measuring the construct. 
However, this assumption is frequently violated, 
especially in complex, multidimensional measures. 
Raykov (1997) demonstrated that even when only 
one item in a scale deviates from essential tau-
equivalence, it can significantly impact alpha's 
effectiveness as a reliability indicator. This 
violation often results in alpha underestimating 
the true reliability of a measure.  

2. Sensitivity to the number of items: Cortina (1993) 
initially demonstrated alpha coefficient inflation 
with increased items, even amid low inter-item 
correlations, a phenomenon persistently 
overlooked in contemporary research (Dunn et al., 
2014). Recent studies have corroborated this 
sensitivity, showing artificial inflation in long 
scales despite low inter-item correlations (Gu et 
al., 2013), and demonstrating how this leads to 
reliability overestimation (Trizano-Hermosilla and 
Alvarado, 2016).  

3. Assumption of unidimensionality: Cronbach's 
alpha, while widely used, assumes 
unidimensionality in scale measurement, which 
may not be appropriate for the multidimensional 
constructs present in UTAUT. Green and Yang 
(2009) cautioned against the potential misuse of 
alpha in such multifaceted scales. Further research 
by Reise et al. (2013) offered empirical support for 
this concern, demonstrating that alpha can yield 
unreliable estimates for multidimensional 
constructs. 

 
While Cronbach's alpha remains a common 

reliability measure, UTAUT researchers have also 
employed alternative CTT approaches, including 
test-retest reliability. As an example, Ustun et al. 
(2023) utilized test-retest reliability in their 
augmented reality UTAUT scale study, reporting a 
value of 0.97. However, it's important to note that 
test-retest reliability has limitations, particularly in 
the context of rapidly evolving technology. It 
assumes trait stability over time and can be 
susceptible to practice effects, potentially leading to 
overestimated reliability in dynamic technological 
environments (Ployhart and Vandenberg, 2009; 
Polit, 2014). 

A notable evolution in UTAUT studies involves 
the integration of composite reliability, especially 
within PLS-SEM frameworks. Hair et al. (2017) 
championed this methodology in UTAUT research, 
contending that it provides a more precise 
evaluation of internal consistency for complex, 
multi-faceted constructs. Venkatesh et al. (2012) 
applied this method in their long-term investigation 
of an expanded UTAUT framework, revealing 
composite reliability scores above 0.80 for all UTAUT 
components. Nevertheless, this approach assumes 
equal indicator weights, which may not always suit 
complex UTAUT constructs (Bollen and Lennox, 
1991; Schuberth et al., 2023). 

2.2.2. The potential of item response theory 
approach 

IRT is a modern psychometric approach that 
models the relationship between an individual's 
response to an item and the level of the latent trait 
being measured. In contrast to CTT, which 
emphasizes overall test statistics, IRT offers detailed 
item-specific data and enables more accurate 
assessment across various levels of the latent trait 
being evaluated (Embretson and Reise, 2013). 
Despite its potential, the application of IRT in UTAUT 
research remains limited, representing a significant 
opportunity for advancing the psychometric 
assessment of UTAUT. IRT offers several advantages 
over CTT approaches, including the ability to provide 
detailed information about item-level properties and 
differential item functioning. Among the various IRT 
frameworks, Samejima’s (1969) GRM stands out as 
particularly relevant for UTAUT research, as it 
specifically addresses ordered polytomous data such 
as the Likert-scale responses frequently employed in 
UTAUT questionnaires (Samejima, 1969). In his 
research, Toland (2013) explained that the model is 
particularly well-suited for analyzing UTAUT scales, 
providing a more refined insight into item 
performance across varying degrees of technology 
acceptance. Applying IRT, especially GRM, to UTAUT 
provides several advantages. It enables researchers 
to enhance scale quality and efficacy by revealing 
item performance across trait levels (Embretson and 
Reise, 2013). The sample-independent nature of IRT 
parameters potentially yields more generalizable 
outcomes and enables reliable cross-study 
comparisons (Hambleton, 2021; Hambleton and 
Jones, 1993; Hambleton et al., 1993). Additionally, 
IRT facilitates differential item functioning (DIF) 
detection, ensuring fairness in measurement across 
diverse populations (Teresi and Fleishman, 2007). 
These advantages make IRT a powerful tool for 
advancing UTAUT research, potentially leading to 
more nuanced and culturally sensitive models of 
technology acceptance. 

3. Research method 

3.1. Respondents 

This study surveyed 202 mathematics teachers 
from Malaysia's national secondary schools. These 
teachers were selected at random from the entire 
population of Malaysian Mathematics teachers. 

3.2. Data collection and instrument 

This study collected data through a survey 
utilizing a UTAUT-based instrument. Four UTAUT 
constructs were examined: Performance Expectancy, 
Effort Expectancy, Social Influence, and Facilitating 
Conditions. Each construct comprised four items 
rated on a 5-point Likert scale.  
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3.3. Data analysis 

3.3.1. GRM 

In general, the GRM predicts the cumulative 
probability that a person will select a certain 
response or a higher one based on their underlying 
ability or trait. This probability is formulated as: 
 
𝑃(𝑋𝑖𝑗𝑘 = 𝑘|𝜃𝑗 , 𝑏𝑖𝑘 , 𝑎𝑖) = 𝑃(𝑋𝑖𝑗𝑘 ≥ 𝑘|𝜃𝑗 , 𝑏𝑖𝑘 , 𝑎𝑖) − 𝑃(𝑋𝑖𝑗𝑘 ≥ 𝑘 +

1|𝜃𝑗 , 𝑏𝑖𝑘 , 𝑎𝑖)= 
1

1 + 𝑒
−𝑎𝑖(𝜃𝑗−𝑏𝑖𝑘)

 − 
1

1 + 𝑒
−𝑎𝑖(𝜃𝑗−𝑏𝑖,𝑘+1)

 

 
where, i = 1, ..., I and I is the number of items. j = 1, …, 
n and n is the number of persons. k = 1, ..., K, and K is 

the number of response categories. 𝑋𝑖𝑗𝑘  is the 

response k to item i for person j. ai is the 
discrimination parameter for item i. bik is the 
threshold for category k of item i.  

The model includes thresholds that separate 
response options. For example, a threshold (bi5) 
distinguishes scores of 5 and above from scores of 4 
and below. Tables 1 and 2 present the cut-off values 
for the item difficulty parameter, and the cut-off 
values for the item discriminant parameter, 
respectively. 

 
Table 1: Cut-off values for item difficulty parameter 

Cut-off values Interpretation 
< -2.00 Very easy 

-2.00 – -0.50 Easy 
-0.50 – 0.5 Medium 
0.50 – 2.00 Hard 

>2.00 Very hard 

 
Table 2: Cut-off values for item difficulty parameter and 

item discriminant parameter 
Cut-off values Interpretation 

0 None 
0.01 – 0.34 Very low 
0.35 – 0.64 Low 
0.65 – 1.34 Moderate 
1.35 – 1.69 High 

> 1.70 Very high 
+ Infinity Perfect 

3.3.2. Item operational characteristic curves 
(OCC), and item response category characteristic 
curves (ICC) 

OCCs and ICCs are used in IRT to assess how well 
test items measure traits like ability or knowledge. 
OCCs demonstrate how likely someone is to select a 
specific response level (or any higher level) as their 
ability or knowledge increases. For lower trait levels, 
the curves for easier responses rise swiftly, whereas 
the curves for harder responses increase more 
gradually at higher trait levels. The 0.5 probability 
point on the curve marks a threshold, indicating that 
the likelihood of selecting one response equals that 
of selecting the next. The steepness of the curve, 
which is determined by the discrimination 
parameter, reflects how effectively the item 
differentiates between individuals at various trait 
levels. Fig. 1 shows an example of OCC. ICCs provide 
probabilistic representations of correct responses 
across trait levels. Steeper curves indicate that the 

item does a better job of distinguishing between 
individuals with different trait levels. For items with 
multiple response options, the points where the 
curves intersect show where one response becomes 
more likely than the next, providing insights into 
how well the item works and how respondents 
behave. Fig. 2 shows an example of ICC. 

 

 
Fig. 1: An example of an OCC 

 

 
Fig. 2: An example of ICC 

3.3.3. Assessing goodness of fit between two 
competing models 

In evaluating the fit of two competing models, 
such as a simpler reduced model and a more 
complex full model, a Likelihood Ratio (LR) test can 
be employed. This test examines if adding more 
parameters improves the model's accuracy. Under 
the null hypothesis, the LR statistic follows a chi-
squared (χ²) distribution, with degrees of freedom 
equal to the parameter difference between the 
models. A higher LR value indicates that the Full 
Model is a better fit. We also use Akaike's (2011) 
Information Criterion (AIC) (Akaike, 2011) and 
Bayesian Information Criterion (BIC) (Neath and 
Cavanaugh, 2012) to assess model quality, with 
lower AIC and BIC values signaling the superior 
model. 

3.3.4. Goodness of fit indices 

Goodness-of-fit indices are essential for assessing 
how accurately a statistical model, like the GRM in 
IRT, represents the observed data structure. This 
study employed five key indices: Chi-Square (χ²) 
Statistic, Root Mean Square Error of Approximation 
(RMSEA), Standardized Root Mean Square Residual 
(SRMSR), Tucker-Lewis Index (TLI), and 
Comparative Fit Index (CFI). 

 
1. Chi-square statistic evaluates the difference 

between observed and expected covariance 
matrices, testing the null hypothesis of perfect 
model fit. A lower χ² value relative to degrees of 
freedom (df) suggests a better fit. However, this 
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test is sample size sensitive; large samples can 
make minor discrepancies statistically significant. 
Thus, while a non-significant result (p > 0.05) is 
desirable, it's not always the sole indicator of a 
good fit (Hair et al., 2019). 

2. RMSEA estimates the average per-degree-of-
freedom discrepancy between observed and 
predicted covariance matrices (Cook et al., 2009), 
adjusting for model complexity. Lower values 
indicate better fit: < 0.05 is considered good, 0.05-
0.08 acceptable, and > 0.10 poor (Hair et al., 2019). 

3. SRMSR, the standardized residuals measure, 
assesses the average discrepancy between 
observed and predicted correlations or 
covariances. Lower values indicate better fit, with 
< 0.08 typically considered good. It clearly shows 
how well the model accounts for data variance and 
covariance (Hair et al., 2019). 

4. TLI, also known as the Non-Normed Fit Index 
(NNFI), compares the model's fit to a null model 
(assuming no variable relationships). It penalizes 
complexity and ranges from 0 to 1, with values 
closer to 1 indicating better fit. A TLI > 0.95 
generally suggests a good fit. It adjusts for 
parameter count and model complexity. 

5. CFI evaluates relative fit by comparing the model 
to a baseline (usually a null model with 
uncorrelated variables). It measures the 
proportion of fit improvement over the baseline. 
CFI ranges from 0 to 1, with values closer to 1 
indicating better fit. A CFI > 0.90 is typically 
considered good. It's less sensitive to sample size 
than the Chi-Square test (Hair et al., 2019). 

 
Table 3 presents the cut-off values for these fit 

indicators. 

3.3.5. Test information function (TIF) and 
conditional standard error of measurement 
(CSEM) 

The TIF and CSEM are important measures for 
checking the accuracy and reliability of a test across 
different levels of the trait being measured. TIF 
shows how effectively the test items collectively 
capture information about the trait, with higher TIF 
values suggesting greater accuracy in estimating 
trait levels. CSEM complements TIF by showing the 
precision of these estimates, with lower CSEM values 
indicating more reliable measurements. Both TIF 
and CSEM measures exhibit an inverse relationship: 
as TIF goes up, CSEM goes down, together offering a 
comprehensive understanding of the tests’ reliability 
and accuracy. Fig. 3 shows an example of TIF. 

 
Table 3: Cut-off values for goodness-of-fit indices 

Indices m > 30 
Chi-square Significant p-value is expected 

SMSR ≤ 0.07 (with CFI > 0.92) 
RMSEA < 0.08 (with CFI > 0.92) 

CFI > 0.90 
TLI > 0.90 

m: number of observed items 

 

 

 
Fig. 3: An example of TIF and CSEM plot 

3.3.6. Marginal reliability and empirical 
reliability 

Marginal reliability measures how consistently an 
IRT model estimates a person’s ability across 
different levels of ability in a group. It is akin to 
Cronbach's alpha but designed for IRT models. This 
reliability is calculated by comparing the estimated 
ability scores (true variance) to measurement errors. 
A higher marginal reliability means the model gives 
more accurate and consistent ability estimates.  

On the other hand, empirical reliability checks 
how closely the observed test scores match the true 
ability scores in a dataset, often using methods like 
Expected a posteriori (EAP). High empirical 
reliability suggests that the observed scores are good 
representations of actual abilities. Both reliability 
measures have a range of 0 to 1, with higher values 
suggesting more accurate scores with fewer errors.  

Table 4 provides the cut-off values for 
interpreting these reliability parameters, offering 
guidelines for assessing the quality of measurement 
in IRT models. 

3.3.7. Software package for GRM 

The software packages used to implement the 
GRM were mirt and ltm, both available in the R 
programming environment. 

4. Results and discussions 

Two graded response models were fitted to 
UTAUT scale data. These two models are the 
Reduced Model which assumes that the discriminant 
parameters, ai, are constant, and the Full Model 
which allows the discriminant parameters, ai, to 
vary. Specifically, in the Reduced Model, all items are 
believed to give the same amount of information 
about respondents’ attitudes toward the importance 
of the UTAUT. On the contrary, in the Full Model, all 
items are assumed to provide different amounts of 
information about respondents’ attitudes. Table 5 
shows the findings of the LR tests for all constructs 
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of the UTAUT scale. Based on Table 5, the p-values 
are significant for all constructs. Hence, the Reduced 

Models are rejected. The next discussions on the 
items are based on the Full Models. 

 
Table 4: Cut-off values for item difficulty parameter 

Cut-off values Interpretation 
Below 0.60 Poor reliability The model’s estimates are not reliable, with a significant amount of measurement error. 

0.60 to 0.69 Marginal reliability 
The model’s estimates have a noticeable amount of error and may not be reliable enough for certain 

applications. 
0.70 to 0.79 Acceptable reliability The estimates are somewhat reliable but there is some measurement error. 
0.80 to 0.89 Good reliability The model’s estimates are reliable for most practical purposes. 

0.90 and 
above 

Excellent reliability The model provides highly consistent estimates of the latent trait across different levels of the trait. 

 
Table 5: Result of likelihood ratio (LR) test for the UTAUT scale 

Construct Model AIC BIC Log likelihood LR test df Decision 

Performance expectancy 
Reduced model 1500.3 1550.0 –735.17 - - 

Full model is better 
Full model 1419.8 1479.3 –691.89 86.55* 3 

Effort expectancy 
Reduced model 1367.5 1423.7 –666.74 - - 

Full model is better 
Full model 1258.7 1324.9 –609.34 114.79* 3 

Social influence 
Reduced model 1390.6 1453.4 –676.28 - - 

Full model is better 
Full model 1330.2 1396.4 –645.09 62.38* 1 

Facilitating conditions 
Reduced model 1875.8 1932.1 –920.92 - - 

Full model is better 
Full model 1772.3 1838.5 –866.16 109.52* 3 

*: p <0.001 
 

Table 6 shows the item difficulty category (bik) 
and the value of the discriminant parameter (ai) for 
the Full Model. The last row indicates the value that 
separates each response category. Since items are 
based on a 5-point Likert scale, there are five 
thresholds that separate each of these response 
categories. Since each respondent has a 100% 
chance to choose the "Strongly disagree" response 
category, there is no threshold for the response 
category. 

The values of the discriminant parameter (ai) for 
all items are positive. Except for item JP4, all items 

have very high discriminant values, indicating that 
these items can discriminate between respondents 
with low and high trait levels. Quite the reverse, the 
discriminant value for item JP4 is considered 
moderate, implying that this item is not good in 
discriminating between respondents with low and 
high trait levels. 

The thresholds for all items span from negative to 
positive sections of the trait, ascendingly. In other 
words, the higher response category has higher item 
locations, indicating endorsement of more UTAUT 
scale. 

 
Table 6: UTAUT scale parameter estimates using a GRM 

Construct Item code Item description B1 B2 B3 B4 A 

Performance 
expectancy 

JP1 
I think the 3D geometry pedagogical module based on augmented reality 

will be useful in my teaching. 
- 

–
2.82 

–
1.17 

0.52 
4.11 

(Very high) 

JP1 
I think the 3D geometry pedagogical module based on augmented reality 

will be useful in my teaching. 
- 

–
2.82 

–
1.17 

0.52 
4.11 

(Very high) 

JP2 
The use of the 3D geometry pedagogical module based on augmented reality 

will allow me to complete teaching tasks more quickly. 
- 

–
2.07 

–
1.08 

0.71 
3.46 

(Very high) 

JP3 
The use of the 3D geometry pedagogical module based on augmented reality 

will increase my work productivity. 
–

2.58 
–

1.92 
–

1.01 
0.53 

31.47 
(Very high) 

JP4 
If I use the 3D geometry pedagogical module based on augmented reality, 
the skills gained from this module will increase my chances of getting an 

outstanding service award. 

–
3.04 

–
1.23 

–
0.14 

1.75 
1.20 

(Moderate) 

Effort 
expectancy 

JU5 
The use of the 3D geometry pedagogical module based on augmented reality 

will be clear and easy to understand. 
–

2.82 
–

1.84 
–

0.69 
0.81 

5.18 
(Very high) 

JU6 
I will easily master the 3D geometry pedagogical module based on 

augmented reality. 
–

2.83 
–

1.75 
–

0.65 
0.99 

4.71 
(Very high) 

JU7 
I think the 3D geometry pedagogical module based on augmented reality 

will be easy to use. 
–

2.86 
–

1.88 
–

0.47 
1.07 

4.63 
(Very high) 

JU8 
I think learning the use of the 3D geometry pedagogical module based on 

augmented reality will be easy for me. 
–

2.60 
–

1.85 
–

0.74 
1.040 

3.38 
(Very high) 

Social 
influence 

PS9 
Individuals who influence my behavior think I need to use the 3D Geometry 

Pedagogical Module based on Augmented Reality. 
–

2.83 
–

1.44 
–

0.36 
1.18 

4.76 
(Very high) 

PS 
10 

My colleagues encouraged me to use the pedagogical module of the 3D 
geometry module based on augmented reality. 

–
2.70 

–
1.43 

–
0.41 

1.18 
10. 84 

(Very high) 

PS 
11 

The researchers who carried out this study assisted in the continuous use of 
the pedagogical module of the 3D geometry pedagogical module based on 

augmented reality. 

–
2.56 

–
1.55 

–
0.50 

1.07 
3.70 

(Very high) 

PS 
12 

The school provides support for the use of the 3D geometry pedagogical 
module based on augmented reality. 

–
3.00 

-1.55 
–

0.33 
1.43 

3.22 
(Very high) 

Facilitating 
conditions 

KP 
13 

I have the necessary equipment to use the 3D Geometry Pedagogical Module 
based on Augmented Reality. 

–
1.90 

–
0.55 

0.24 1.62 
4.31 

(Very high) 
KP 
14 

I have knowledge of the procedures for using the 3D geometry pedagogical 
module based on augmented reality. 

–
1.68 

–
0.43 

0.36 1.60 
6.22 

(Very high) 
KP 
15 

I feel that the 3D geometry pedagogical module based on augmented reality 
cannot be adapted to other teaching methods that I use (reverse-coded). 

–
3.46 

–
0.48 

0.47 2.12 
1.95 

(Very high) 
KP 
16 

I have someone to refer to if I encounter problems related to the use of the 
3D geometry pedagogical module based on augmented reality. 

–
1.59 

–
0.50 

0.44 1.74 
2.84 

(Very high) 

   
1 vs 
2–5 

1–2 
vs 3–

5 

1–3 
vs 4–

5 

1–4 vs 
5 

 

B1, B2, B3, and B4 are the threshold parameters for each item 
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Fig. 4 presents the item operating characteristic 
curves (OCCs) for all items, showing the probability 
of selecting each category or higher as a function of 
latent attitude. Thresholds are indicated by 
intersections with the 0.5 probability lines. Each 
curve has a distinct slope at this line, visible in its 

OCC. Items with high discrimination values (like JP3 
and PS10) demonstrate steeper slopes than those 
with lower values, reflecting their greater ability to 
differentiate between respondents at various levels 
of the measured trait. 

 

    

    

    

    
Fig. 4: OCC for all items 

 

Fig. 5 displays the ICCs. The ICC curves, which 
represent the relative position of each category 
along the trait levels, can be used to evaluate 
response categories for each item. Except for item 
JP3, each response category for all items is most 
likely to be selected at different trait levels, as 
depicted in the graphs. Specifically, category 5 is the 
most dominant for all items. On the contrary, the 
response categories for item JP4 were not 
monotonically related to performance expectancy, 
and there was somewhat vague evidence regarding 
the selection of each response category along the 
trait levels. Fig. 6 shows the graphs of TIF and CSEM 
for all constructs. In general, the information initially 
increases as the trait level rises, reaching a peak 
where the test is most informative. Beyond this peak, 
the information starts to decline, indicating that the 
test becomes less precise at very high or very low 
levels of the latent trait. On the contrary, the inverse 
relationship between TIF and CSEM means that as 

the information increases, the CSEM decreases, 
reflecting higher measurement precision. 

Precisely, for Performance Expectancy and 
Facilitating Conditions constructs, the tests provide 
high information in the middle ranges (–3 < theta 
<3). This indicates that at these points, the tests can 
distinguish between individuals with different levels 
of the trait with high accuracy.  On the other hand, 
the tests provide low information at both extremes, 
suggesting that the tests might be less reliable or 
informative at these extreme ends of the latent trait 
continuum. For Effort Expectancy and Social 
Influence constructs, the tests provide high 
information in the greater middle range (–4 < theta 
<3), and similarly low information at both extremes. 
As depicted in the graphs, the CSEM values were at 
the lowest positions when the TIF values were at the 
highest ranges, and vice versa. This reduced 
accuracy at the extreme ends of the ability scale 
stems from individuals with very low or high trait 
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levels consistently providing similar responses, 
which impedes accurate assessment. Therefore, to 
improve measurements at these ends of the scale, 
experts recommend incorporating items with 
broader difficulty levels and implementing adaptive 
testing procedures that adjust to each individual’s 
trait levels (Samejima, 1969). Table 7 displays model 

fit statistics for four key constructs in a structural 
equation framework: Performance Expectancy, 
Effort Expectancy, Social Influence, and Facilitating 
Conditions. Table 7 provides a comprehensive 
assessment of each construct's fit using multiple 
indicators, including Chi-Square, degrees of freedom 
(df), p-value RMSEA, SRMSR, TLI, and CFI. 

 
Table 7: Goodness-of-fit indices 

Construct Chi-square Df P RMSEA SMSR TLI CFI 
Performance expectancy 5.49 2 0.06 0.07 0.04 0.98 0.99 

Effort expectancy 4.32 2 0.12 0.07 0.03 0.99 0.99 
Social influence 4.24 2 0.25 0.06 0.04 0.90 0.97 

Facilitating conditions 1.83 2 0.40 0.00 0.04 1.000 1.00 

 

    

    

    

    
Fig. 5: ICC for all items 

 

Performance Expectancy demonstrates an 
acceptable fit, with a Chi-Square value of 5.488 (df = 
2, p = 0.064) slightly exceeding the 0.05 threshold. 
Its RMSEA of 0.073 falls within the preferred range, 
while the SRMSR (0.042), TLI (0.976), and CFI 
(0.992) all indicate a good fit. Effort Expectancy 
exhibits a stronger fit, boasting a Chi-Square value of 
4.316 (df = 2, p = 0.116) well above the 0.05 
threshold. The construct's RMSEA (0.076) is 
acceptable, and its SRMSR (0.027), TLI (0.989), and 
CFI (0.996) approach ideal values suggest an 
excellent model fit. For Social Influence, the Chi-
Square value of 4.235 (df = 2, p = 0.254) indicates a 

good fit. Its RMSEA (0.065) is acceptable, while the 
SRMSR (0.043), TLI (0.902), and CFI (0.967) suggest 
a reasonable fit overall. 

Facilitating Conditions stands out with 
exceptional fit indices. Its Chi-Square value of 1.831 
(df = 2, p = 0.4) far exceeds the threshold, 
complemented by a perfect RMSEA of 0.00. The 
construct's SRMSR (0.041) and perfect TLI and CFI 
(both 1.000) further confirm its excellent fit. 

In summary, Effort Expectancy and Facilitating 
Conditions showcase excellent model fit, while 
Performance Expectancy presents an acceptable fit 
with minor concerns. Social Influence demonstrates 
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a reasonable fit based on the analyzed indices. Given 
these results, all items will be retained for the 
UTAUT scale, as presented in Table 8. The reported 
values indicate robust reliability for the evaluated 
items, with both types of reliability provided. 

5. Conclusion 

This study applied Samejima’s (1969) GRM to 
evaluate the psychometric properties of the UTAUT 
scale. The findings reveal that the discriminant 
parameters for all items are positive, with most 
items having high discriminant values, meaning they 
effectively distinguish between individuals with 
different levels of the underlying trait. The threshold 
parameters progress from negative to positive, 
indicating that higher response categories 
correspond to higher levels of agreement with the 
UTAUT scale items. These thresholds cover a wide 
range of trait continuums, reflecting varied levels of 
respondent agreement. To understand what these 

threshold parameters mean in practice, we examined 
measurement precision across the trait continuum. 
Our analysis shows that the UTAUT scale works best 
in measuring technology acceptance in the middle 
range, where most respondents fall. However, the 
scale becomes less precise at the extremes, where 
respondents show either very low or very high 
acceptance levels, primarily due to these individuals 
consistently selecting extreme responses. This 
limitation could be addressed through broader 
difficulty ranges in items and adaptive testing 
procedures (Samejima, 1969). 

In conclusion, despite the identified limitations in 
measuring extreme responses, the UTAUT model 
demonstrates robust psychometric properties with 
acceptable model fit and high reliability. These 
findings substantiate the overall psychometric 
integrity of the UTAUT scale, validating its utility as a 
measurement instrument for technology acceptance 
assessment. 

 
Performance expectancy Effort expectancy 

  

  

Social influence Facilitating conditions 

  

  
Fig. 6: Test information functions and conditional standard error 
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Table 8: Final items for UTAUT scale, marginal reliability, and empirical reliability 

Construct 
Item 
code 

Item description 
Marginal 
reliability 

Empirical 
reliability 

Performance 
Expectancy 

JP1 
I think the 3D geometry pedagogical module based on augmented reality will be useful in my 

teaching. 

0.808 0.861 
JP2 

The use of the 3D geometry pedagogical module based on augmented reality will allow me to 
complete teaching tasks more quickly. 

JP3 
The use of the 3D geometry pedagogical module based on augmented reality will increase my work 

productivity. 

JP4 
If I use of the 3D geometry pedagogical module based on augmented reality, the skills gained from 

this module will increase my chances of getting an outstanding service award. 

Effort 
Expectancy 

JU5 
The use of the 3D geometry pedagogical module based on augmented reality will be clear and easy 

to understand. 

0.885 0.893 
JU6 I will easily master the 3D geometry pedagogical module based on augmented reality. 
JU7 I think the 3D geometry pedagogical module based on augmented reality will be easy to use. 

JU8 
I think learning the use of the 3D geometry pedagogical module based on augmented reality will be 

easy for me. 

Social 
Influence 

PS9 
Individuals who influence my behavior think I need to use the 3D geometry pedagogical module 

based on augmented reality. 

0.891 0.909 
PS10 

Colleagues encouraged me to use the pedagogical module of the 3D geometry module based on 
augmented reality. 

PS11 
The researchers who carried out this study assisted in the continuous use of the pedagogical 

module of the 3D geometry pedagogical module based on augmented reality. 

PS12 
The school provides support for the use of the 3D geometry pedagogical module based on 

augmented reality. 

Facilitating 
Conditions 

KP13 
I have the necessary equipment to use the 3D geometry pedagogical module based on augmented 

reality. 

0.910 0.913 
KP14 

I have knowledge of the procedures for using the 3D geometry pedagogical module based on 
augmented reality. 

KP15 
I feel that the 3D geometry pedagogical module based on augmented reality cannot be adapted to 

other teaching methods that I use (reverse-coded). 

KP16 
I have someone to refer to if I encounter problems related to the use of the 3D geometry 

pedagogical module based on augmented reality. 

 

5.1. Implications of the study 

The implications of this study have broad 
relevance for those using the UTAUT scale in 
research and practice. By applying Samejima’s 
(1969) GRM, the study has provided detailed 
insights into the psychometric properties of the 
UTAUT scale, confirming its effectiveness in 
distinguishing different levels of technology 
acceptance and providing reliable insights into user 
behavior. In addition, its broad threshold parameters 
allow for comprehensive assessment across various 
trait levels. For practitioners, particularly those 
involved in the implementation and promotion of 
new technologies, the study's findings suggest that 
the UTAUT scale is a valuable tool for identifying 
potential challenges or resistance points in user 
adoption. The scale’s ability to provide detailed 
information within the middle range of the trait 
spectrum means it can effectively guide 
interventions and strategies aimed at improving 
technology uptake.  

In addition, the UTAUT scale has significant 
practical implications in various domains like 
education and healthcare by enabling a more 
nuanced understanding of technology adoption. In 
educational settings, it helps institutions effectively 
evaluate and address factors affecting digital tool 
adoption, including e-learning platforms (Abbad, 
2021), enabling evidence-based decisions about 
training programs, interface design, and accessibility 
improvements. In healthcare, the scale has proven 
valuable for understanding technology adoption 
patterns, from electronic health records to 
telemedicine platforms, by identifying key barriers 
related to usability, trust, and infrastructure (Byrd et 
al., 2021; Rouidi et al., 2022; Wang et al., 2020; Yu 

and Chen, 2024). Overall, the UTAUT scale supports 
the development of inclusive, scalable, and user-
centered solutions, ensuring that technology 
effectively meets the diverse needs of users. 

5.2. Limitations and recommendations for future 
research 

This study highlights that while the UTAUT scale 
effectively distinguishes between different levels of 
technology acceptance, its accuracy diminishes at the 
extreme ends of the trait continuum. The scale is 
most precise in the middle range of technology 
acceptance but provides less reliable information for 
individuals at very high or very low levels. This 
limitation affects the overall comprehensiveness of 
the scale in capturing the full spectrum of technology 
acceptance. 

Future research should explore methods to 
enhance the UTAUT scale's precision at the extremes 
of the technology acceptance spectrum. This could 
involve developing additional items or adjusting the 
scale to improve accuracy for individuals with very 
high or low levels of technological acceptance. 
Alternatively, implementing adaptive testing could 
be explored as a solution. 

List of abbreviations 

UTAUT 
Unified theory of acceptance and use of 
technology 

CTT Classical test theory 
IRT Item response theory 
GRM Graded response model 

PLS-SEM 
Partial least squares structural equation 
modeling 

DIF Differential item functioning 
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OCC Operational characteristic curve 
ICC Item response category characteristic curve 
TIF Test information function 
CSEM Conditional standard error of measurement 
LR Likelihood ratio 
AIC Akaike’s information criterion 
BIC Bayesian information criterion 
RMSEA Root mean square error of approximation 
SRMSR Standardized root mean square residual 
TLI Tucker-Lewis index 
CFI Comparative fit index 
EAP Expected a posteriori 

mirt 
Multidimensional item response theory (R 
software package) 

ltm Latent trait models (R software package) 
df Degrees of freedom 
A Discrimination parameter in GRM 

B1–B4 
Threshold parameters for Likert scale 
responses 

JP1–JP4 
Item codes under performance expectancy 
construct 

JU5–JU8 Item codes under effort expectancy construct 
PS9–
PS12 

Item codes under social influence construct 

KP13–
KP16 

Item codes under facilitating conditions 
construct 
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